Betweenness for lists of points. #
This file defines notions of lists of points in an affine space being in order on a line.
Main definitions #
def
List.Wbtw
(R : Type u_1)
{V : Type u_2}
{P : Type u_4}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(l : List P)
:
The points in a list are weakly in that order on a line.
Equations
- List.Wbtw R l = List.Triplewise (Wbtw R) l
Instances For
def
List.Sbtw
(R : Type u_1)
{V : Type u_2}
{P : Type u_4}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(l : List P)
:
The points in a list are strictly in that order on a line.
Instances For
@[simp]
theorem
List.wbtw_nil
(R : Type u_1)
{V : Type u_2}
(P : Type u_4)
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
:
@[simp]
theorem
List.sbtw_nil
(R : Type u_1)
{V : Type u_2}
(P : Type u_4)
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
:
@[simp]
theorem
List.wbtw_singleton
(R : Type u_1)
{V : Type u_2}
{P : Type u_4}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(p₁ : P)
:
@[simp]
theorem
List.sbtw_singleton
(R : Type u_1)
{V : Type u_2}
{P : Type u_4}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(p₁ : P)
:
@[simp]
theorem
List.wbtw_pair
(R : Type u_1)
{V : Type u_2}
{P : Type u_4}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
(p₁ p₂ : P)
:
@[simp]
theorem
List.sbtw_pair
(R : Type u_1)
{V : Type u_2}
{P : Type u_4}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{p₁ p₂ : P}
:
theorem
List.Sbtw.wbtw
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{l : List P}
(h : List.Sbtw R l)
:
List.Wbtw R l
theorem
List.Sbtw.pairwise_ne
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{l : List P}
(h : List.Sbtw R l)
:
theorem
List.sbtw_iff_triplewise_and_ne_pair
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{l : List P}
:
theorem
List.Wbtw.map
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{l : List P}
(h : List.Wbtw R l)
(f : P →ᵃ[R] P')
:
theorem
Function.Injective.list_wbtw_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{l : List P}
{f : P →ᵃ[R] P'}
(hf : Injective ⇑f)
:
theorem
Function.Injective.list_sbtw_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{l : List P}
{f : P →ᵃ[R] P'}
(hf : Injective ⇑f)
:
theorem
AffineEquiv.list_wbtw_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{l : List P}
(f : P ≃ᵃ[R] P')
:
theorem
AffineEquiv.list_sbtw_map_iff
{R : Type u_1}
{V : Type u_2}
{V' : Type u_3}
{P : Type u_4}
{P' : Type u_5}
[OrderedRing R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[AddCommGroup V']
[Module R V']
[AddTorsor V' P']
{l : List P}
(f : P ≃ᵃ[R] P')
:
theorem
List.Sorted.wbtw
{R : Type u_1}
[LinearOrderedField R]
{l : List R}
(h : Sorted (fun (x1 x2 : R) => x1 ≤ x2) l)
:
List.Wbtw R l
theorem
List.Sorted.sbtw
{R : Type u_1}
[LinearOrderedField R]
{l : List R}
(h : Sorted (fun (x1 x2 : R) => x1 < x2) l)
:
List.Sbtw R l
theorem
List.exists_map_eq_of_sorted_nonempty_iff_wbtw
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{l : List P}
(hl : l ≠ [])
:
theorem
List.exists_map_eq_of_sorted_iff_wbtw
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{l : List P}
:
theorem
List.exists_map_eq_of_sorted_nonempty_iff_sbtw
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
{l : List P}
(hl : l ≠ [])
:
theorem
List.exists_map_eq_of_sorted_iff_sbtw
{R : Type u_1}
{V : Type u_2}
{P : Type u_4}
[LinearOrderedField R]
[AddCommGroup V]
[Module R V]
[AddTorsor V P]
[Nontrivial P]
{l : List P}
: