Poincaré disc #
In this file we define Complex.UnitDisc
to be the unit disc in the complex plane. We also
introduce some basic operations on this disc.
Complex unit disc.
Equations
- UnitDisc.termđť”» = Lean.ParserDescr.node `UnitDisc.termđť”» 1024 (Lean.ParserDescr.symbol "đť”»")
Instances For
Equations
- Complex.UnitDisc.instCoe = { coe := Subtype.val }
A constructor that assumes abs z < 1
instead of dist z 0 < 1
and returns an element
of đť”»
instead of ↥Metric.ball (0 : ℂ) 1
.
Equations
- Complex.UnitDisc.mk z hz = ⟨z, ⋯⟩
Instances For
@[simp]
theorem
Complex.UnitDisc.coe_mk
(z : â„‚)
(hz : Complex.abs z < 1)
:
↑(Complex.UnitDisc.mk z hz) = z
@[simp]
theorem
Complex.UnitDisc.mk_coe
(z : Complex.UnitDisc)
(hz : Complex.abs ↑z < 1 := ⋯)
:
Complex.UnitDisc.mk (↑z) hz = z
@[simp]
theorem
Complex.UnitDisc.mk_neg
(z : â„‚)
(hz : Complex.abs (-z) < 1)
:
Complex.UnitDisc.mk (-z) hz = -Complex.UnitDisc.mk z â‹Ż
Equations
- Complex.UnitDisc.instInhabited = { default := 0 }
@[simp]
instance
Complex.UnitDisc.isScalarTower_closedBall_closedBall :
IsScalarTower (↑(Metric.closedBall 0 1)) (↑(Metric.closedBall 0 1)) Complex.UnitDisc
@[simp]
theorem
Complex.UnitDisc.coe_smul_closedBall
(z : ↑(Metric.closedBall 0 1))
(w : Complex.UnitDisc)
:
Conjugate point of the unit disc.
Equations
- z.conj = Complex.UnitDisc.mk ((starRingEnd ℂ) ↑z) ⋯
Instances For
@[simp]
@[simp]