Multiplicative actions of/on balls and spheres #
Let E
be a normed vector space over a normed field 𝕜
. In this file we define the following
multiplicative actions.
- The closed unit ball in
𝕜
acts on open balls and closed balls centered at0
inE
. - The unit sphere in
𝕜
acts on open balls, closed balls, and spheres centered at0
inE
.
instance
mulActionClosedBallBall
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
MulAction ↑(Metric.closedBall 0 1) ↑(Metric.ball 0 r)
Equations
- mulActionClosedBallBall = MulAction.mk ⋯ ⋯
instance
continuousSMul_closedBall_ball
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
ContinuousSMul ↑(Metric.closedBall 0 1) ↑(Metric.ball 0 r)
Equations
- ⋯ = ⋯
instance
mulActionClosedBallClosedBall
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
MulAction ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 r)
Equations
- mulActionClosedBallClosedBall = MulAction.mk ⋯ ⋯
instance
continuousSMul_closedBall_closedBall
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
ContinuousSMul ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 r)
Equations
- ⋯ = ⋯
instance
mulActionSphereBall
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
MulAction ↑(Metric.sphere 0 1) ↑(Metric.ball 0 r)
Equations
- mulActionSphereBall = MulAction.mk ⋯ ⋯
instance
continuousSMul_sphere_ball
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
ContinuousSMul ↑(Metric.sphere 0 1) ↑(Metric.ball 0 r)
Equations
- ⋯ = ⋯
instance
mulActionSphereClosedBall
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
MulAction ↑(Metric.sphere 0 1) ↑(Metric.closedBall 0 r)
Equations
- mulActionSphereClosedBall = MulAction.mk ⋯ ⋯
instance
continuousSMul_sphere_closedBall
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
ContinuousSMul ↑(Metric.sphere 0 1) ↑(Metric.closedBall 0 r)
Equations
- ⋯ = ⋯
instance
mulActionSphereSphere
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
MulAction ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 r)
Equations
- mulActionSphereSphere = MulAction.mk ⋯ ⋯
instance
continuousSMul_sphere_sphere
{𝕜 : Type u_1}
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
{r : ℝ}
:
ContinuousSMul ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 r)
Equations
- ⋯ = ⋯
instance
isScalarTower_closedBall_closedBall_closedBall
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[NormedAlgebra 𝕜 𝕜']
[IsScalarTower 𝕜 𝕜' E]
:
IsScalarTower ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 r)
Equations
- ⋯ = ⋯
instance
isScalarTower_closedBall_closedBall_ball
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[NormedAlgebra 𝕜 𝕜']
[IsScalarTower 𝕜 𝕜' E]
:
IsScalarTower ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 1) ↑(Metric.ball 0 r)
Equations
- ⋯ = ⋯
instance
isScalarTower_sphere_closedBall_closedBall
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[NormedAlgebra 𝕜 𝕜']
[IsScalarTower 𝕜 𝕜' E]
:
IsScalarTower ↑(Metric.sphere 0 1) ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 r)
Equations
- ⋯ = ⋯
instance
isScalarTower_sphere_closedBall_ball
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[NormedAlgebra 𝕜 𝕜']
[IsScalarTower 𝕜 𝕜' E]
:
IsScalarTower ↑(Metric.sphere 0 1) ↑(Metric.closedBall 0 1) ↑(Metric.ball 0 r)
Equations
- ⋯ = ⋯
instance
isScalarTower_sphere_sphere_closedBall
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[NormedAlgebra 𝕜 𝕜']
[IsScalarTower 𝕜 𝕜' E]
:
IsScalarTower ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 1) ↑(Metric.closedBall 0 r)
Equations
- ⋯ = ⋯
instance
isScalarTower_sphere_sphere_ball
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[NormedAlgebra 𝕜 𝕜']
[IsScalarTower 𝕜 𝕜' E]
:
IsScalarTower ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 1) ↑(Metric.ball 0 r)
Equations
- ⋯ = ⋯
instance
isScalarTower_sphere_sphere_sphere
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[NormedAlgebra 𝕜 𝕜']
[IsScalarTower 𝕜 𝕜' E]
:
IsScalarTower ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 r)
Equations
- ⋯ = ⋯
instance
isScalarTower_sphere_ball_ball
{𝕜 : Type u_1}
{𝕜' : Type u_2}
[NormedField 𝕜]
[NormedField 𝕜']
[NormedAlgebra 𝕜 𝕜']
:
IsScalarTower ↑(Metric.sphere 0 1) ↑(Metric.ball 0 1) ↑(Metric.ball 0 1)
Equations
- ⋯ = ⋯
instance
isScalarTower_closedBall_ball_ball
{𝕜 : Type u_1}
{𝕜' : Type u_2}
[NormedField 𝕜]
[NormedField 𝕜']
[NormedAlgebra 𝕜 𝕜']
:
IsScalarTower ↑(Metric.closedBall 0 1) ↑(Metric.ball 0 1) ↑(Metric.ball 0 1)
Equations
- ⋯ = ⋯
instance
instSMulCommClass_closedBall_closedBall_closedBall
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[SMulCommClass 𝕜 𝕜' E]
:
SMulCommClass ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 r)
Equations
- ⋯ = ⋯
instance
instSMulCommClass_closedBall_closedBall_ball
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[SMulCommClass 𝕜 𝕜' E]
:
SMulCommClass ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 1) ↑(Metric.ball 0 r)
Equations
- ⋯ = ⋯
instance
instSMulCommClass_sphere_closedBall_closedBall
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[SMulCommClass 𝕜 𝕜' E]
:
SMulCommClass ↑(Metric.sphere 0 1) ↑(Metric.closedBall 0 1) ↑(Metric.closedBall 0 r)
Equations
- ⋯ = ⋯
instance
instSMulCommClass_sphere_closedBall_ball
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[SMulCommClass 𝕜 𝕜' E]
:
SMulCommClass ↑(Metric.sphere 0 1) ↑(Metric.closedBall 0 1) ↑(Metric.ball 0 r)
Equations
- ⋯ = ⋯
instance
instSMulCommClass_sphere_ball_ball
{𝕜 : Type u_1}
{𝕜' : Type u_2}
[NormedField 𝕜]
[NormedField 𝕜']
[NormedAlgebra 𝕜 𝕜']
:
SMulCommClass ↑(Metric.sphere 0 1) ↑(Metric.ball 0 1) ↑(Metric.ball 0 1)
Equations
- ⋯ = ⋯
instance
instSMulCommClass_sphere_sphere_closedBall
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[SMulCommClass 𝕜 𝕜' E]
:
SMulCommClass ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 1) ↑(Metric.closedBall 0 r)
Equations
- ⋯ = ⋯
instance
instSMulCommClass_sphere_sphere_ball
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[SMulCommClass 𝕜 𝕜' E]
:
SMulCommClass ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 1) ↑(Metric.ball 0 r)
Equations
- ⋯ = ⋯
instance
instSMulCommClass_sphere_sphere_sphere
{𝕜 : Type u_1}
{𝕜' : Type u_2}
{E : Type u_3}
[NormedField 𝕜]
[NormedField 𝕜']
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜' E]
{r : ℝ}
[SMulCommClass 𝕜 𝕜' E]
:
SMulCommClass ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 1) ↑(Metric.sphere 0 r)
Equations
- ⋯ = ⋯
theorem
ne_neg_of_mem_sphere
(𝕜 : Type u_1)
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[CharZero 𝕜]
{r : ℝ}
(hr : r ≠ 0)
(x : ↑(Metric.sphere 0 r))
:
theorem
ne_neg_of_mem_unit_sphere
(𝕜 : Type u_1)
{E : Type u_3}
[NormedField 𝕜]
[SeminormedAddCommGroup E]
[NormedSpace 𝕜 E]
[CharZero 𝕜]
(x : ↑(Metric.sphere 0 1))
: