Documentation

Mathlib.Analysis.Complex.Polynomial.UnitTrinomial

Irreducibility of unit trinomials #

TODO #

Develop more theory (e.g., it suffices to check that aeval z p ≠ 0 for z = 0 and z a root of unity).

theorem Polynomial.IsUnitTrinomial.irreducible_of_coprime' {p : Polynomial } (hp : p.IsUnitTrinomial) (h : ∀ (z : ), ¬((Polynomial.aeval z) p = 0 (Polynomial.aeval z) p.mirror = 0)) :

A unit trinomial is irreducible if it has no complex roots in common with its mirror.