Unit Trinomials #
This file defines irreducible trinomials and proves an irreducibility criterion.
Main definitions #
Main results #
Polynomial.IsUnitTrinomial.irreducible_of_coprime
: An irreducibility criterion for unit trinomials.
theorem
Polynomial.trinomial_monic
{R : Type u_1}
[Semiring R]
{k : ℕ}
{m : ℕ}
{n : ℕ}
{u : R}
{v : R}
(hkm : k < m)
(hmn : m < n)
:
(Polynomial.trinomial k m n u v 1).Monic
theorem
Polynomial.IsUnitTrinomial.card_support_eq_three
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
:
p.support.card = 3
theorem
Polynomial.IsUnitTrinomial.coeff_isUnit
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
{k : ℕ}
(hk : k ∈ p.support)
:
IsUnit (p.coeff k)
theorem
Polynomial.IsUnitTrinomial.leadingCoeff_isUnit
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
:
IsUnit p.leadingCoeff
theorem
Polynomial.IsUnitTrinomial.trailingCoeff_isUnit
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
:
IsUnit p.trailingCoeff
theorem
Polynomial.isUnitTrinomial_iff''
{p : Polynomial ℤ}
{q : Polynomial ℤ}
(h : p * p.mirror = q * q.mirror)
:
p.IsUnitTrinomial ↔ q.IsUnitTrinomial
theorem
Polynomial.IsUnitTrinomial.irreducible_aux2
{p : Polynomial ℤ}
{q : Polynomial ℤ}
{k : ℕ}
{m : ℕ}
{m' : ℕ}
{n : ℕ}
(hkm : k < m)
(hmn : m < n)
(hkm' : k < m')
(hmn' : m' < n)
(u : ℤˣ)
(v : ℤˣ)
(w : ℤˣ)
(hp : p = Polynomial.trinomial k m n ↑u ↑v ↑w)
(hq : q = Polynomial.trinomial k m' n ↑u ↑v ↑w)
(h : p * p.mirror = q * q.mirror)
:
theorem
Polynomial.IsUnitTrinomial.irreducible_aux3
{p : Polynomial ℤ}
{q : Polynomial ℤ}
{k : ℕ}
{m : ℕ}
{m' : ℕ}
{n : ℕ}
(hkm : k < m)
(hmn : m < n)
(hkm' : k < m')
(hmn' : m' < n)
(u : ℤˣ)
(v : ℤˣ)
(w : ℤˣ)
(x : ℤˣ)
(z : ℤˣ)
(hp : p = Polynomial.trinomial k m n ↑u ↑v ↑w)
(hq : q = Polynomial.trinomial k m' n ↑x ↑v ↑z)
(h : p * p.mirror = q * q.mirror)
:
theorem
Polynomial.IsUnitTrinomial.irreducible_of_coprime
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
(h : IsRelPrime p p.mirror)
:
theorem
Polynomial.IsUnitTrinomial.irreducible_of_isCoprime
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
(h : IsCoprime p p.mirror)
:
A unit trinomial is irreducible if it is coprime with its mirror