Unit Trinomials #
This file defines irreducible trinomials and proves an irreducibility criterion.
Main definitions #
Main results #
Polynomial.IsUnitTrinomial.irreducible_of_coprime
: An irreducibility criterion for unit trinomials.
Shorthand for a trinomial
Equations
- Polynomial.trinomial k m n u v w = Polynomial.C u * Polynomial.X ^ k + Polynomial.C v * Polynomial.X ^ m + Polynomial.C w * Polynomial.X ^ n
Instances For
theorem
Polynomial.trinomial_def
{R : Type u_1}
[Semiring R]
(k m n : ℕ)
(u v w : R)
:
Polynomial.trinomial k m n u v w = Polynomial.C u * Polynomial.X ^ k + Polynomial.C v * Polynomial.X ^ m + Polynomial.C w * Polynomial.X ^ n
theorem
Polynomial.trinomial_leading_coeff'
{R : Type u_1}
[Semiring R]
{k m n : ℕ}
{u v w : R}
(hkm : k < m)
(hmn : m < n)
:
(Polynomial.trinomial k m n u v w).coeff n = w
theorem
Polynomial.trinomial_middle_coeff
{R : Type u_1}
[Semiring R]
{k m n : ℕ}
{u v w : R}
(hkm : k < m)
(hmn : m < n)
:
(Polynomial.trinomial k m n u v w).coeff m = v
theorem
Polynomial.trinomial_trailing_coeff'
{R : Type u_1}
[Semiring R]
{k m n : ℕ}
{u v w : R}
(hkm : k < m)
(hmn : m < n)
:
(Polynomial.trinomial k m n u v w).coeff k = u
theorem
Polynomial.trinomial_natDegree
{R : Type u_1}
[Semiring R]
{k m n : ℕ}
{u v w : R}
(hkm : k < m)
(hmn : m < n)
(hw : w ≠ 0)
:
(Polynomial.trinomial k m n u v w).natDegree = n
theorem
Polynomial.trinomial_natTrailingDegree
{R : Type u_1}
[Semiring R]
{k m n : ℕ}
{u v w : R}
(hkm : k < m)
(hmn : m < n)
(hu : u ≠ 0)
:
(Polynomial.trinomial k m n u v w).natTrailingDegree = k
theorem
Polynomial.trinomial_leadingCoeff
{R : Type u_1}
[Semiring R]
{k m n : ℕ}
{u v w : R}
(hkm : k < m)
(hmn : m < n)
(hw : w ≠ 0)
:
(Polynomial.trinomial k m n u v w).leadingCoeff = w
theorem
Polynomial.trinomial_trailingCoeff
{R : Type u_1}
[Semiring R]
{k m n : ℕ}
{u v w : R}
(hkm : k < m)
(hmn : m < n)
(hu : u ≠ 0)
:
(Polynomial.trinomial k m n u v w).trailingCoeff = u
theorem
Polynomial.trinomial_monic
{R : Type u_1}
[Semiring R]
{k m n : ℕ}
{u v : R}
(hkm : k < m)
(hmn : m < n)
:
(Polynomial.trinomial k m n u v 1).Monic
theorem
Polynomial.trinomial_mirror
{R : Type u_1}
[Semiring R]
{k m n : ℕ}
{u v w : R}
(hkm : k < m)
(hmn : m < n)
(hu : u ≠ 0)
(hw : w ≠ 0)
:
(Polynomial.trinomial k m n u v w).mirror = Polynomial.trinomial k (n - m + k) n w v u
theorem
Polynomial.IsUnitTrinomial.card_support_eq_three
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
:
p.support.card = 3
theorem
Polynomial.IsUnitTrinomial.coeff_isUnit
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
{k : ℕ}
(hk : k ∈ p.support)
:
IsUnit (p.coeff k)
theorem
Polynomial.IsUnitTrinomial.leadingCoeff_isUnit
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
:
IsUnit p.leadingCoeff
theorem
Polynomial.IsUnitTrinomial.trailingCoeff_isUnit
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
:
IsUnit p.trailingCoeff
theorem
Polynomial.isUnitTrinomial_iff''
{p q : Polynomial ℤ}
(h : p * p.mirror = q * q.mirror)
:
p.IsUnitTrinomial ↔ q.IsUnitTrinomial
theorem
Polynomial.IsUnitTrinomial.irreducible_aux1
{p : Polynomial ℤ}
{k m n : ℕ}
(hkm : k < m)
(hmn : m < n)
(u v w : ℤˣ)
(hp : p = Polynomial.trinomial k m n ↑u ↑v ↑w)
:
theorem
Polynomial.IsUnitTrinomial.irreducible_aux2
{p q : Polynomial ℤ}
{k m m' n : ℕ}
(hkm : k < m)
(hmn : m < n)
(hkm' : k < m')
(hmn' : m' < n)
(u v w : ℤˣ)
(hp : p = Polynomial.trinomial k m n ↑u ↑v ↑w)
(hq : q = Polynomial.trinomial k m' n ↑u ↑v ↑w)
(h : p * p.mirror = q * q.mirror)
:
theorem
Polynomial.IsUnitTrinomial.irreducible_aux3
{p q : Polynomial ℤ}
{k m m' n : ℕ}
(hkm : k < m)
(hmn : m < n)
(hkm' : k < m')
(hmn' : m' < n)
(u v w x z : ℤˣ)
(hp : p = Polynomial.trinomial k m n ↑u ↑v ↑w)
(hq : q = Polynomial.trinomial k m' n ↑x ↑v ↑z)
(h : p * p.mirror = q * q.mirror)
:
theorem
Polynomial.IsUnitTrinomial.irreducible_of_coprime
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
(h : IsRelPrime p p.mirror)
:
theorem
Polynomial.IsUnitTrinomial.irreducible_of_isCoprime
{p : Polynomial ℤ}
(hp : p.IsUnitTrinomial)
(h : IsCoprime p p.mirror)
:
A unit trinomial is irreducible if it is coprime with its mirror