Positive linear maps in C⋆-algebras #
This file develops the API for positive linear maps over C⋆-algebras.
Main results #
PositiveLinearMap.exists_norm_apply_le
: positive maps are bounded (and therefore continuous) on non-unital C⋆-algebras.
References #
- The proof that positive maps are bounded was taken from https://math.stackexchange.com/questions/426487/why-is-every-positive-linear-map-between-c-algebras-bounded
theorem
map_isSelfAdjoint
{A₁ : Type u_1}
{A₂ : Type u_2}
[NonUnitalRing A₁]
[Module ℂ A₁]
[SMulCommClass ℝ A₁ A₁]
[IsScalarTower ℝ A₁ A₁]
[StarRing A₁]
[TopologicalSpace A₁]
[NonUnitalContinuousFunctionalCalculus ℝ A₁ IsSelfAdjoint]
[PartialOrder A₁]
[StarOrderedRing A₁]
[NonUnitalRing A₂]
[Module ℂ A₂]
[StarRing A₂]
[PartialOrder A₂]
[StarOrderedRing A₂]
(f : A₁ →ₚ[ℂ] A₂)
(a : A₁)
(ha : IsSelfAdjoint a)
:
IsSelfAdjoint (f a)
theorem
PositiveLinearMap.apply_le_of_isSelfAdjoint
{B₁ : Type u_3}
{B₂ : Type u_4}
[CStarAlgebra B₁]
[CStarAlgebra B₂]
[PartialOrder B₁]
[PartialOrder B₂]
[StarOrderedRing B₁]
[StarOrderedRing B₂]
(f : B₁ →ₚ[ℂ] B₂)
(x : B₁)
(hx : IsSelfAdjoint x)
:
theorem
PositiveLinearMap.norm_apply_le_of_nonneg
{B₁ : Type u_3}
{B₂ : Type u_4}
[CStarAlgebra B₁]
[CStarAlgebra B₂]
[PartialOrder B₁]
[PartialOrder B₂]
[StarOrderedRing B₁]
[StarOrderedRing B₂]
(f : B₁ →ₚ[ℂ] B₂)
(x : B₁)
(hx : 0 ≤ x)
:
theorem
PositiveLinearMap.exists_norm_apply_le
{A₁ : Type u_1}
{A₂ : Type u_2}
[NonUnitalCStarAlgebra A₁]
[NonUnitalCStarAlgebra A₂]
[PartialOrder A₁]
[StarOrderedRing A₁]
[PartialOrder A₂]
[StarOrderedRing A₂]
(f : A₁ →ₚ[ℂ] A₂)
:
If f
is a positive map, then it is bounded (and therefore continuous).
instance
PositiveLinearMap.instContinuousLinearMapClassComplexOfPositiveLinearMapClass
{A₁ : Type u_1}
{A₂ : Type u_2}
[NonUnitalCStarAlgebra A₁]
[NonUnitalCStarAlgebra A₂]
[PartialOrder A₁]
[StarOrderedRing A₁]
[PartialOrder A₂]
[StarOrderedRing A₂]
{F : Type u_5}
[FunLike F A₁ A₂]
[PositiveLinearMapClass F ℂ A₁ A₂]
:
ContinuousLinearMapClass F ℂ A₁ A₂
instance
PositiveLinearMap.instStarHomClassOfPositiveLinearMapClassComplex
{A₁ : Type u_1}
{A₂ : Type u_2}
[NonUnitalCStarAlgebra A₁]
[NonUnitalCStarAlgebra A₂]
[PartialOrder A₁]
[StarOrderedRing A₁]
[PartialOrder A₂]
[StarOrderedRing A₂]
{F : Type u_5}
[FunLike F A₁ A₂]
[PositiveLinearMapClass F ℂ A₁ A₂]
:
StarHomClass F A₁ A₂