Documentation

Mathlib.Analysis.CStarAlgebra.PositiveLinearMap

Positive linear maps in C⋆-algebras #

This file develops the API for positive linear maps over C⋆-algebras.

Main results #

References #

theorem map_isSelfAdjoint {A₁ : Type u_1} {A₂ : Type u_2} [NonUnitalRing A₁] [Module A₁] [SMulCommClass A₁ A₁] [IsScalarTower A₁ A₁] [StarRing A₁] [TopologicalSpace A₁] [NonUnitalContinuousFunctionalCalculus A₁ IsSelfAdjoint] [PartialOrder A₁] [StarOrderedRing A₁] [NonUnitalRing A₂] [Module A₂] [StarRing A₂] [PartialOrder A₂] [StarOrderedRing A₂] (f : A₁ →ₚ[] A₂) (a : A₁) (ha : IsSelfAdjoint a) :
theorem PositiveLinearMap.apply_le_of_isSelfAdjoint {B₁ : Type u_3} {B₂ : Type u_4} [CStarAlgebra B₁] [CStarAlgebra B₂] [PartialOrder B₁] [PartialOrder B₂] [StarOrderedRing B₁] [StarOrderedRing B₂] (f : B₁ →ₚ[] B₂) (x : B₁) (hx : IsSelfAdjoint x) :
f x f ((algebraMap B₁) x)
theorem PositiveLinearMap.norm_apply_le_of_nonneg {B₁ : Type u_3} {B₂ : Type u_4} [CStarAlgebra B₁] [CStarAlgebra B₂] [PartialOrder B₁] [PartialOrder B₂] [StarOrderedRing B₁] [StarOrderedRing B₂] (f : B₁ →ₚ[] B₂) (x : B₁) (hx : 0 x) :
theorem PositiveLinearMap.exists_norm_apply_le {A₁ : Type u_1} {A₂ : Type u_2} [NonUnitalCStarAlgebra A₁] [NonUnitalCStarAlgebra A₂] [PartialOrder A₁] [StarOrderedRing A₁] [PartialOrder A₂] [StarOrderedRing A₂] (f : A₁ →ₚ[] A₂) :
∃ (C : NNReal), ∀ (a : A₁), f a C * a

If f is a positive map, then it is bounded (and therefore continuous).