Documentation

Mathlib.Algebra.Order.Module.PositiveLinearMap

Positive linear maps #

This file defines positive linear maps as a linear map that is also an order homomorphism.

Notes #

More substantial results on positive maps such as their continuity can be found in the Analysis/CStarAlgebra folder.

structure PositiveLinearMap (R : Type u_1) (E₁ : Type u_2) (E₂ : Type u_3) [Semiring R] [OrderedAddCommMonoid E₁] [OrderedAddCommMonoid E₂] [Module R E₁] [Module R E₂] extends E₁ →ₗ[R] E₂, E₁ →o E₂ :
Type (max u_2 u_3)

A positive linear map is a linear map that is also an order homomorphism.

Instances For

    Notation for a PositiveLinearMap.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      class PositiveLinearMapClass (F : Type u_1) (R : outParam (Type u_2)) (E₁ : Type u_3) (E₂ : Type u_4) [Semiring R] [OrderedAddCommMonoid E₁] [OrderedAddCommMonoid E₂] [Module R E₁] [Module R E₂] [FunLike F E₁ E₂] extends SemilinearMapClass F (RingHom.id R) E₁ E₂, RelHomClass F (fun (x1 x2 : E₁) => x1 x2) fun (x1 x2 : E₂) => x1 x2 :

      A positive linear map is a linear map that is also an order homomorphism.

      Instances
        def PositiveLinearMapClass.toPositiveLinearMap {F : Type u_1} {R : Type u_2} {E₁ : Type u_3} {E₂ : Type u_4} [Semiring R] [OrderedAddCommMonoid E₁] [OrderedAddCommMonoid E₂] [Module R E₁] [Module R E₂] [FunLike F E₁ E₂] [PositiveLinearMapClass F R E₁ E₂] (f : F) :
        E₁ →ₚ[R] E₂

        Reinterpret an element of a type of positive linear maps as a positive linear map.

        Equations
        Instances For
          instance PositiveLinearMapClass.instCoeToLinearMap {F : Type u_1} {R : Type u_2} {E₁ : Type u_3} {E₂ : Type u_4} [Semiring R] [OrderedAddCommMonoid E₁] [OrderedAddCommMonoid E₂] [Module R E₁] [Module R E₂] [FunLike F E₁ E₂] [PositiveLinearMapClass F R E₁ E₂] :
          CoeHead F (E₁ →ₚ[R] E₂)

          Reinterpret an element of a type of positive linear maps as a positive linear map.

          Equations
          instance PositiveLinearMap.instFunLike {R : Type u_1} {E₁ : Type u_2} {E₂ : Type u_3} [Semiring R] [OrderedAddCommMonoid E₁] [OrderedAddCommMonoid E₂] [Module R E₁] [Module R E₂] :
          FunLike (E₁ →ₚ[R] E₂) E₁ E₂
          Equations
          instance PositiveLinearMap.instPositiveLinearMapClass {R : Type u_1} {E₁ : Type u_2} {E₂ : Type u_3} [Semiring R] [OrderedAddCommMonoid E₁] [OrderedAddCommMonoid E₂] [Module R E₁] [Module R E₂] :
          PositiveLinearMapClass (E₁ →ₚ[R] E₂) R E₁ E₂
          @[simp]
          theorem PositiveLinearMap.map_smul_of_tower {R : Type u_1} {E₁ : Type u_2} {E₂ : Type u_3} [Semiring R] [OrderedAddCommMonoid E₁] [OrderedAddCommMonoid E₂] [Module R E₁] [Module R E₂] {S : Type u_4} [SMul S E₁] [SMul S E₂] [LinearMap.CompatibleSMul E₁ E₂ S R] (f : E₁ →ₚ[R] E₂) (c : S) (x : E₁) :
          f (c x) = c f x
          theorem PositiveLinearMap.map_nonneg {R : Type u_1} {E₁ : Type u_2} {E₂ : Type u_3} [Semiring R] [OrderedAddCommMonoid E₁] [OrderedAddCommMonoid E₂] [Module R E₁] [Module R E₂] (f : E₁ →ₚ[R] E₂) {x : E₁} (hx : 0 x) :
          0 f x
          def PositiveLinearMap.mk₀ {R : Type u_1} {E₁ : Type u_2} {E₂ : Type u_3} [Semiring R] [OrderedAddCommGroup E₁] [OrderedAddCommGroup E₂] [Module R E₁] [Module R E₂] (f : E₁ →ₗ[R] E₂) (hf : ∀ (x : E₁), 0 x0 f x) :
          E₁ →ₚ[R] E₂

          Define a positive map from a linear map that maps nonnegative elements to nonnegative elements

          Equations
          Instances For