Positive linear maps #
This file defines positive linear maps as a linear map that is also an order homomorphism.
Notes #
More substantial results on positive maps such as their continuity can be found in
the Analysis/CStarAlgebra
folder.
structure
PositiveLinearMap
(R : Type u_1)
(E₁ : Type u_2)
(E₂ : Type u_3)
[Semiring R]
[OrderedAddCommMonoid E₁]
[OrderedAddCommMonoid E₂]
[Module R E₁]
[Module R E₂]
extends E₁ →ₗ[R] E₂, E₁ →o E₂ :
Type (max u_2 u_3)
A positive linear map is a linear map that is also an order homomorphism.
- toFun : E₁ → E₂
Instances For
Notation for a PositiveLinearMap
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
class
PositiveLinearMapClass
(F : Type u_1)
(R : outParam (Type u_2))
(E₁ : Type u_3)
(E₂ : Type u_4)
[Semiring R]
[OrderedAddCommMonoid E₁]
[OrderedAddCommMonoid E₂]
[Module R E₁]
[Module R E₂]
[FunLike F E₁ E₂]
extends SemilinearMapClass F (RingHom.id R) E₁ E₂, RelHomClass F (fun (x1 x2 : E₁) => x1 ≤ x2) fun (x1 x2 : E₂) => x1 ≤ x2 :
A positive linear map is a linear map that is also an order homomorphism.
Instances
def
PositiveLinearMapClass.toPositiveLinearMap
{F : Type u_1}
{R : Type u_2}
{E₁ : Type u_3}
{E₂ : Type u_4}
[Semiring R]
[OrderedAddCommMonoid E₁]
[OrderedAddCommMonoid E₂]
[Module R E₁]
[Module R E₂]
[FunLike F E₁ E₂]
[PositiveLinearMapClass F R E₁ E₂]
(f : F)
:
Reinterpret an element of a type of positive linear maps as a positive linear map.
Equations
- PositiveLinearMapClass.toPositiveLinearMap f = { toLinearMap := ↑f, monotone' := ⋯ }
Instances For
instance
PositiveLinearMapClass.instCoeToLinearMap
{F : Type u_1}
{R : Type u_2}
{E₁ : Type u_3}
{E₂ : Type u_4}
[Semiring R]
[OrderedAddCommMonoid E₁]
[OrderedAddCommMonoid E₂]
[Module R E₁]
[Module R E₂]
[FunLike F E₁ E₂]
[PositiveLinearMapClass F R E₁ E₂]
:
Reinterpret an element of a type of positive linear maps as a positive linear map.
Equations
- PositiveLinearMapClass.instCoeToLinearMap = { coe := fun (f : F) => PositiveLinearMapClass.toPositiveLinearMap f }
instance
PositiveLinearMap.instFunLike
{R : Type u_1}
{E₁ : Type u_2}
{E₂ : Type u_3}
[Semiring R]
[OrderedAddCommMonoid E₁]
[OrderedAddCommMonoid E₂]
[Module R E₁]
[Module R E₂]
:
Equations
- PositiveLinearMap.instFunLike = { coe := fun (f : E₁ →ₚ[R] E₂) => f.toFun, coe_injective' := ⋯ }
instance
PositiveLinearMap.instPositiveLinearMapClass
{R : Type u_1}
{E₁ : Type u_2}
{E₂ : Type u_3}
[Semiring R]
[OrderedAddCommMonoid E₁]
[OrderedAddCommMonoid E₂]
[Module R E₁]
[Module R E₂]
:
PositiveLinearMapClass (E₁ →ₚ[R] E₂) R E₁ E₂
@[simp]
theorem
PositiveLinearMap.map_smul_of_tower
{R : Type u_1}
{E₁ : Type u_2}
{E₂ : Type u_3}
[Semiring R]
[OrderedAddCommMonoid E₁]
[OrderedAddCommMonoid E₂]
[Module R E₁]
[Module R E₂]
{S : Type u_4}
[SMul S E₁]
[SMul S E₂]
[LinearMap.CompatibleSMul E₁ E₂ S R]
(f : E₁ →ₚ[R] E₂)
(c : S)
(x : E₁)
:
theorem
PositiveLinearMap.map_nonneg
{R : Type u_1}
{E₁ : Type u_2}
{E₂ : Type u_3}
[Semiring R]
[OrderedAddCommMonoid E₁]
[OrderedAddCommMonoid E₂]
[Module R E₁]
[Module R E₂]
(f : E₁ →ₚ[R] E₂)
{x : E₁}
(hx : 0 ≤ x)
:
def
PositiveLinearMap.mk₀
{R : Type u_1}
{E₁ : Type u_2}
{E₂ : Type u_3}
[Semiring R]
[OrderedAddCommGroup E₁]
[OrderedAddCommGroup E₂]
[Module R E₁]
[Module R E₂]
(f : E₁ →ₗ[R] E₂)
(hf : ∀ (x : E₁), 0 ≤ x → 0 ≤ f x)
:
Define a positive map from a linear map that maps nonnegative elements to nonnegative elements
Equations
- PositiveLinearMap.mk₀ f hf = { toLinearMap := f, monotone' := ⋯ }