Integrals and the continuous functional calculus #
This file gives results about integrals of the form ∫ x, cfc (f x) a
. Most notably, we show
that the integral commutes with the continuous functional calculus under appropriate conditions.
Main declarations #
cfc_integral
: given a functionf : X → 𝕜 → 𝕜
, we have thatcfc (fun r => ∫ x, f x r ∂μ) a = ∫ x, cfc (f x) a ∂μ
under appropriate conditionscfcₙ_integral
: given a functionf : X → 𝕜 → 𝕜
, we have thatcfcₙ (fun r => ∫ x, f x r ∂μ) a = ∫ x, cfcₙ (f x) a ∂μ
under appropriate conditions
TODO #
- Lift this to the case where the CFC is over
ℝ≥0
- Use this to prove operator monotonicity and concavity/convexity of
rpow
andlog
theorem
cfcL_integral
{X : Type u_1}
{𝕜 : Type u_2}
{A : Type u_3}
{p : A → Prop}
[RCLike 𝕜]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedRing A]
[StarRing A]
[NormedAlgebra 𝕜 A]
[NormedAlgebra ℝ A]
[CompleteSpace A]
[ContinuousFunctionalCalculus 𝕜 p]
(a : A)
(f : X → C(↑(spectrum 𝕜 a), 𝕜))
(hf₁ : MeasureTheory.Integrable f μ)
(ha : autoParam (p a) _auto✝)
:
theorem
cfcHom_integral
{X : Type u_1}
{𝕜 : Type u_2}
{A : Type u_3}
{p : A → Prop}
[RCLike 𝕜]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedRing A]
[StarRing A]
[NormedAlgebra 𝕜 A]
[NormedAlgebra ℝ A]
[CompleteSpace A]
[ContinuousFunctionalCalculus 𝕜 p]
(a : A)
(f : X → C(↑(spectrum 𝕜 a), 𝕜))
(hf₁ : MeasureTheory.Integrable f μ)
(ha : autoParam (p a) _auto✝)
:
theorem
cfc_integral
{X : Type u_1}
{𝕜 : Type u_2}
{A : Type u_3}
{p : A → Prop}
[RCLike 𝕜]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedRing A]
[StarRing A]
[NormedAlgebra 𝕜 A]
[NormedAlgebra ℝ A]
[CompleteSpace A]
[ContinuousFunctionalCalculus 𝕜 p]
[TopologicalSpace X]
[OpensMeasurableSpace X]
(f : X → 𝕜 → 𝕜)
(bound : X → ℝ)
(a : A)
[SecondCountableTopologyEither X C(↑(spectrum 𝕜 a), 𝕜)]
(hf₁ : ∀ (x : X), ContinuousOn (f x) (spectrum 𝕜 a))
(hf₂ : Continuous fun (x : X) => { toFun := (spectrum 𝕜 a).restrict (f x), continuous_toFun := ⋯ })
(hbound : ∀ (x : X), ∀ z ∈ spectrum 𝕜 a, ‖f x z‖ ≤ ‖bound x‖)
(hbound_finite_integral : MeasureTheory.HasFiniteIntegral bound μ)
(ha : autoParam (p a) _auto✝)
:
The continuous functional calculus commutes with integration.
theorem
cfc_integral'
{X : Type u_1}
{𝕜 : Type u_2}
{A : Type u_3}
{p : A → Prop}
[RCLike 𝕜]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NormedRing A]
[StarRing A]
[NormedAlgebra 𝕜 A]
[NormedAlgebra ℝ A]
[CompleteSpace A]
[ContinuousFunctionalCalculus 𝕜 p]
[TopologicalSpace X]
[OpensMeasurableSpace X]
(f : X → 𝕜 → 𝕜)
(bound : X → ℝ)
(a : A)
[SecondCountableTopologyEither X C(↑(spectrum 𝕜 a), 𝕜)]
(hf : Continuous (Function.uncurry fun (x : X) => (spectrum 𝕜 a).restrict (f x)))
(hbound : ∀ (x : X), ∀ z ∈ spectrum 𝕜 a, ‖f x z‖ ≤ ‖bound x‖)
(hbound_finite_integral : MeasureTheory.HasFiniteIntegral bound μ)
(ha : autoParam (p a) _auto✝)
:
The continuous functional calculus commutes with integration.
theorem
cfcₙL_integral
{X : Type u_1}
{𝕜 : Type u_2}
{A : Type u_3}
{p : A → Prop}
[RCLike 𝕜]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NonUnitalNormedRing A]
[StarRing A]
[CompleteSpace A]
[NormedSpace 𝕜 A]
[NormedSpace ℝ A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[NonUnitalContinuousFunctionalCalculus 𝕜 p]
(a : A)
(f : X → ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜)
(hf₁ : MeasureTheory.Integrable f μ)
(ha : autoParam (p a) _auto✝)
:
theorem
cfcₙHom_integral
{X : Type u_1}
{𝕜 : Type u_2}
{A : Type u_3}
{p : A → Prop}
[RCLike 𝕜]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NonUnitalNormedRing A]
[StarRing A]
[CompleteSpace A]
[NormedSpace 𝕜 A]
[NormedSpace ℝ A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[NonUnitalContinuousFunctionalCalculus 𝕜 p]
(a : A)
(f : X → ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜)
(hf₁ : MeasureTheory.Integrable f μ)
(ha : autoParam (p a) _auto✝)
:
theorem
cfcₙ_integral
{X : Type u_1}
{𝕜 : Type u_2}
{A : Type u_3}
{p : A → Prop}
[RCLike 𝕜]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NonUnitalNormedRing A]
[StarRing A]
[CompleteSpace A]
[NormedSpace 𝕜 A]
[NormedSpace ℝ A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[NonUnitalContinuousFunctionalCalculus 𝕜 p]
[TopologicalSpace X]
[OpensMeasurableSpace X]
(f : X → 𝕜 → 𝕜)
(bound : X → ℝ)
(a : A)
[SecondCountableTopologyEither X (ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜)]
(hf₁ : ∀ (x : X), ContinuousOn (f x) (quasispectrum 𝕜 a))
(hf₂ : ∀ (x : X), f x 0 = 0)
(hf₃ : Continuous fun (x : X) => { toFun := (quasispectrum 𝕜 a).restrict (f x), continuous_toFun := ⋯, map_zero' := ⋯ })
(hbound : ∀ (x : X), ∀ z ∈ quasispectrum 𝕜 a, ‖f x z‖ ≤ ‖bound x‖)
(hbound_finite_integral : MeasureTheory.HasFiniteIntegral bound μ)
(ha : autoParam (p a) _auto✝)
:
The non-unital continuous functional calculus commutes with integration.
theorem
cfcₙ_integral'
{X : Type u_1}
{𝕜 : Type u_2}
{A : Type u_3}
{p : A → Prop}
[RCLike 𝕜]
[MeasurableSpace X]
{μ : MeasureTheory.Measure X}
[NonUnitalNormedRing A]
[StarRing A]
[CompleteSpace A]
[NormedSpace 𝕜 A]
[NormedSpace ℝ A]
[IsScalarTower 𝕜 A A]
[SMulCommClass 𝕜 A A]
[NonUnitalContinuousFunctionalCalculus 𝕜 p]
[TopologicalSpace X]
[OpensMeasurableSpace X]
(f : X → 𝕜 → 𝕜)
(bound : X → ℝ)
(a : A)
[SecondCountableTopologyEither X (ContinuousMapZero (↑(quasispectrum 𝕜 a)) 𝕜)]
(hf : Continuous (Function.uncurry fun (x : X) => (quasispectrum 𝕜 a).restrict (f x)))
(hf₂ : ∀ (x : X), f x 0 = 0)
(hbound : ∀ (x : X), ∀ z ∈ quasispectrum 𝕜 a, ‖f x z‖ ≤ ‖bound x‖)
(hbound_finite_integral : MeasureTheory.HasFiniteIntegral bound μ)
(ha : autoParam (p a) _auto✝)
:
The non-unital continuous functional calculus commutes with integration.