Properties on the underlying functions of morphisms of schemes. #
This file includes various results on properties of morphisms of schemes that come from properties of the underlying map of topological spaces, including
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyInjective :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
Function.Injective).RespectsIso
instance
AlgebraicGeometry.injective_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Injective)
Equations
class
AlgebraicGeometry.Surjective
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
A morphism of schemes is surjective if the underlying map is.
- surj : Function.Surjective ⇑f.base
Instances
theorem
AlgebraicGeometry.surjective_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
AlgebraicGeometry.Surjective f ↔ Function.Surjective ⇑f.base
theorem
AlgebraicGeometry.Surjective.surj
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{f : X ⟶ Y}
[self : AlgebraicGeometry.Surjective f]
:
Function.Surjective ⇑f.base
theorem
AlgebraicGeometry.surjective_eq_topologically :
@AlgebraicGeometry.Surjective = AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => Function.Surjective
theorem
AlgebraicGeometry.Scheme.Hom.surjective
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X.Hom Y)
[AlgebraicGeometry.Surjective f]
:
Function.Surjective ⇑f.base
@[instance 100]
instance
AlgebraicGeometry.instSurjectiveOfIsIsoScheme
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
[CategoryTheory.IsIso f]
:
Equations
- ⋯ = ⋯
instance
AlgebraicGeometry.instSurjectiveCompScheme
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[AlgebraicGeometry.Surjective f]
[AlgebraicGeometry.Surjective g]
:
Equations
- ⋯ = ⋯
theorem
AlgebraicGeometry.Surjective.of_comp
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[AlgebraicGeometry.Surjective (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
AlgebraicGeometry.Surjective.comp_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[AlgebraicGeometry.Surjective f]
:
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenMap :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
IsOpenMap).RespectsIso
instance
AlgebraicGeometry.isOpenMap_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsOpenMap)
Equations
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedMap :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
IsClosedMap).RespectsIso
instance
AlgebraicGeometry.isClosedMap_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsClosedMap)
Equations
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsEmbedding :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
IsEmbedding).RespectsIso
instance
AlgebraicGeometry.isEmbedding_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsEmbedding)
Equations
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsOpenEmbedding :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
IsOpenEmbedding).RespectsIso
instance
AlgebraicGeometry.isOpenEmbedding_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsOpenEmbedding)
instance
AlgebraicGeometry.instRespectsIsoSchemeTopologicallyIsClosedEmbedding :
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] =>
IsClosedEmbedding).RespectsIso
instance
AlgebraicGeometry.isClosedEmbedding_isLocalAtTarget :
AlgebraicGeometry.IsLocalAtTarget
(AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => IsClosedEmbedding)
class
AlgebraicGeometry.IsDominant
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
A morphism of schemes is dominant if the underlying map has dense range.
- denseRange : DenseRange ⇑f.base
Instances
theorem
AlgebraicGeometry.isDominant_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
:
AlgebraicGeometry.IsDominant f ↔ DenseRange ⇑f.base
theorem
AlgebraicGeometry.IsDominant.denseRange
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{f : X ⟶ Y}
[self : AlgebraicGeometry.IsDominant f]
:
DenseRange ⇑f.base
theorem
AlgebraicGeometry.dominant_eq_topologically :
@AlgebraicGeometry.IsDominant = AlgebraicGeometry.topologically fun {α β : Type u_1} [TopologicalSpace α] [TopologicalSpace β] => DenseRange
theorem
AlgebraicGeometry.Scheme.Hom.denseRange
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X.Hom Y)
[AlgebraicGeometry.IsDominant f]
:
DenseRange ⇑f.base
@[instance 100]
instance
AlgebraicGeometry.instIsDominantOfSurjective
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
[AlgebraicGeometry.Surjective f]
:
Equations
- ⋯ = ⋯
instance
AlgebraicGeometry.instIsDominantCompScheme
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[AlgebraicGeometry.IsDominant f]
[AlgebraicGeometry.IsDominant g]
:
Equations
- ⋯ = ⋯
theorem
AlgebraicGeometry.IsDominant.of_comp
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[H : AlgebraicGeometry.IsDominant (CategoryTheory.CategoryStruct.comp f g)]
:
theorem
AlgebraicGeometry.IsDominant.comp_iff
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[AlgebraicGeometry.IsDominant f]
:
theorem
AlgebraicGeometry.surjective_of_isDominant_of_isClosed_range
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
[AlgebraicGeometry.IsDominant f]
(hf : IsClosed (Set.range ⇑f.base))
:
theorem
AlgebraicGeometry.IsDominant.of_comp_of_isOpenImmersion
{X : AlgebraicGeometry.Scheme}
{Y : AlgebraicGeometry.Scheme}
{Z : AlgebraicGeometry.Scheme}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[H : AlgebraicGeometry.IsDominant (CategoryTheory.CategoryStruct.comp f g)]
[AlgebraicGeometry.IsOpenImmersion g]
: