Documentation

Mathlib.AlgebraicGeometry.Morphisms.Constructors

Constructors for properties of morphisms between schemes #

This file provides some constructors to obtain morphism properties of schemes from other morphism properties:

Also provides API for showing the standard locality and stability properties for these types of properties.

The AffineTargetMorphismProperty associated to (targetAffineLocally P).diagonal. See diagonal_targetAffineLocally_eq_targetAffineLocally.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    instance AlgebraicGeometry.AffineTargetMorphismProperty.diagonal_respectsIso (P : AlgebraicGeometry.AffineTargetMorphismProperty) [P.toProperty.RespectsIso] :
    P.diagonal.toProperty.RespectsIso
    Equations
    • =
    theorem AlgebraicGeometry.HasAffineProperty.diagonal_of_openCover (P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) {Q : AlgebraicGeometry.AffineTargetMorphismProperty} [AlgebraicGeometry.HasAffineProperty P Q] {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} (f : X Y) (𝒰 : Y.OpenCover) [∀ (i : 𝒰.J), AlgebraicGeometry.IsAffine (𝒰.obj i)] (𝒰' : (i : 𝒰.J) → (CategoryTheory.Limits.pullback f (𝒰.map i)).OpenCover) [∀ (i : 𝒰.J) (j : (𝒰' i).J), AlgebraicGeometry.IsAffine ((𝒰' i).obj j)] (h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), Q (CategoryTheory.Limits.pullback.mapDesc ((𝒰' i).map j) ((𝒰' i).map k) (𝒰.pullbackHom f i))) :
    P.diagonal f
    theorem AlgebraicGeometry.HasAffineProperty.diagonal_of_openCover_diagonal (P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) {Q : AlgebraicGeometry.AffineTargetMorphismProperty} [AlgebraicGeometry.HasAffineProperty P Q] {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} (f : X Y) (𝒰 : Y.OpenCover) [∀ (i : 𝒰.J), AlgebraicGeometry.IsAffine (𝒰.obj i)] (h𝒰 : ∀ (i : (𝒰.pullbackCover f).J), Q.diagonal (𝒰.pullbackHom f i)) :
    P.diagonal f
    theorem AlgebraicGeometry.universally_isLocalAtTarget (P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) (hP₂ : ∀ {X Y : AlgebraicGeometry.Scheme} (f : X Y) {ι : Type u} (U : ιY.Opens), iSup U = (∀ (i : ι), P (f ∣_ U i))P f) :

    topologically P holds for a morphism if the underlying topological map satisfies P.

    Equations
    Instances For
      theorem AlgebraicGeometry.topologically_isStableUnderComposition (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) (hP : ∀ {α β γ : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] [inst_2 : TopologicalSpace γ] (f : αβ) (g : βγ), P fP gP (g f)) :
      (AlgebraicGeometry.topologically fun {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] => P).IsStableUnderComposition

      If a property of maps of topological spaces is stable under composition, the induced morphism property of schemes is stable under composition.

      theorem AlgebraicGeometry.topologically_iso_le (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) (hP : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : α ≃ₜ β), P f) :

      If a property of maps of topological spaces is satisfied by all homeomorphisms, every isomorphism of schemes satisfies the induced property.

      theorem AlgebraicGeometry.topologically_respectsIso (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) (hP₁ : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : α ≃ₜ β), P f) (hP₂ : ∀ {α β γ : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] [inst_2 : TopologicalSpace γ] (f : αβ) (g : βγ), P fP gP (g f)) :
      (AlgebraicGeometry.topologically fun {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] => P).RespectsIso

      If a property of maps of topological spaces is satisfied by homeomorphisms and is stable under composition, the induced property on schemes respects isomorphisms.

      theorem AlgebraicGeometry.topologically_isLocalAtTarget (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) [(AlgebraicGeometry.topologically fun {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] => P).RespectsIso] (hP₂ : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : αβ) (s : Set β), Continuous fIsOpen sP fP (s.restrictPreimage f)) (hP₃ : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : αβ) {ι : Type u} (U : ιTopologicalSpace.Opens β), iSup U = Continuous f(∀ (i : ι), P ((U i).carrier.restrictPreimage f))P f) :

      To check that a topologically defined morphism property is local at the target, we may check the corresponding properties on topological spaces.

      theorem AlgebraicGeometry.topologically_isLocalAtTarget' (P : {α β : Type u} → [inst : TopologicalSpace α] → [inst : TopologicalSpace β] → (αβ)Prop) [(AlgebraicGeometry.topologically fun {α β : Type u} [TopologicalSpace α] [TopologicalSpace β] => P).RespectsIso] (hP : ∀ {α β : Type u} [inst : TopologicalSpace α] [inst_1 : TopologicalSpace β] (f : αβ) {ι : Type u} (U : ιTopologicalSpace.Opens β), iSup U = Continuous f(P f ∀ (i : ι), P ((U i).carrier.restrictPreimage f))) :

      A variant of topologically_isLocalAtTarget that takes one iff statement instead of two implications.

      def AlgebraicGeometry.stalkwise (P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S)Prop) :

      stalkwise P holds for a morphism if all stalks satisfy P.

      Equations
      Instances For
        theorem AlgebraicGeometry.stalkwise_respectsIso {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S)Prop} (hP : RingHom.RespectsIso fun {R S : Type u} [CommRing R] [CommRing S] => P) :
        (AlgebraicGeometry.stalkwise fun {R S : Type u} [CommRing R] [CommRing S] => P).RespectsIso

        If P respects isos, then stalkwise P respects isos.

        theorem AlgebraicGeometry.stalkwiseIsLocalAtTarget_of_respectsIso {P : {R S : Type u} → [inst : CommRing R] → [inst_1 : CommRing S] → (R →+* S)Prop} (hP : RingHom.RespectsIso fun {R S : Type u} [CommRing R] [CommRing S] => P) :

        If P respects isos, then stalkwise P is local at the target.

        If P is local at the target, to show that P is stable under base change, it suffices to check this for base change along a morphism of affine schemes.

        @[deprecated AlgebraicGeometry.HasAffineProperty.diagonal_of_openCover]
        theorem AlgebraicGeometry.diagonalTargetAffineLocallyOfOpenCover (P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) {Q : AlgebraicGeometry.AffineTargetMorphismProperty} [AlgebraicGeometry.HasAffineProperty P Q] {X : AlgebraicGeometry.Scheme} {Y : AlgebraicGeometry.Scheme} (f : X Y) (𝒰 : Y.OpenCover) [∀ (i : 𝒰.J), AlgebraicGeometry.IsAffine (𝒰.obj i)] (𝒰' : (i : 𝒰.J) → (CategoryTheory.Limits.pullback f (𝒰.map i)).OpenCover) [∀ (i : 𝒰.J) (j : (𝒰' i).J), AlgebraicGeometry.IsAffine ((𝒰' i).obj j)] (h𝒰' : ∀ (i : 𝒰.J) (j k : (𝒰' i).J), Q (CategoryTheory.Limits.pullback.mapDesc ((𝒰' i).map j) ((𝒰' i).map k) (𝒰.pullbackHom f i))) :
        P.diagonal f

        Alias of AlgebraicGeometry.HasAffineProperty.diagonal_of_openCover.

        @[deprecated AlgebraicGeometry.universally_isLocalAtTarget]
        theorem AlgebraicGeometry.universallyIsLocalAtTarget (P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) (hP₂ : ∀ {X Y : AlgebraicGeometry.Scheme} (f : X Y) {ι : Type u} (U : ιY.Opens), iSup U = (∀ (i : ι), P (f ∣_ U i))P f) :

        Alias of AlgebraicGeometry.universally_isLocalAtTarget.

        @[deprecated AlgebraicGeometry.universally_isLocalAtTarget]
        theorem AlgebraicGeometry.universallyIsLocalAtTargetOfMorphismRestrict (P : CategoryTheory.MorphismProperty AlgebraicGeometry.Scheme) (hP₂ : ∀ {X Y : AlgebraicGeometry.Scheme} (f : X Y) {ι : Type u} (U : ιY.Opens), iSup U = (∀ (i : ι), P (f ∣_ U i))P f) :

        Alias of AlgebraicGeometry.universally_isLocalAtTarget.