Documentation

Mathlib.AlgebraicGeometry.Limits

(Co)Limits of Schemes #

We construct various limits and colimits in the category of schemes.

TODO #

Spec ℤ is the terminal object in the category of schemes.

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    The map from the empty scheme.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem AlgebraicGeometry.Scheme.emptyTo_c_app (X : AlgebraicGeometry.Scheme) (x✝ : (TopologicalSpace.Opens X.toPresheafedSpace)ᵒᵖ) :
      X.emptyTo.c.app x✝ = CommRingCat.punitIsTerminal.from (X.presheaf.obj x✝)
      @[simp]
      theorem AlgebraicGeometry.Scheme.emptyTo_base_apply (X : AlgebraicGeometry.Scheme) (x : .toPresheafedSpace) :
      X.emptyTo.base x = PEmpty.elim x
      Equations
      • X.hom_unique_of_empty_source = { default := X.emptyTo, uniq := }

      The empty scheme is the initial object in the category of schemes.

      Equations
      Instances For
        @[instance 100]
        @[instance 100]
        instance AlgebraicGeometry.isIso_of_isEmpty {X Y : AlgebraicGeometry.Scheme} (f : X Y) [IsEmpty Y.toPresheafedSpace] :

        A scheme is initial if its underlying space is empty .

        Equations
        Instances For

          Spec 0 is the initial object in the category of schemes.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For

            (Implementation Detail) The glue data associated to a disjoint union.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              @[simp]
              theorem AlgebraicGeometry.disjointGlueData'_t' {ι : Type u} (f : ιAlgebraicGeometry.Scheme) (x✝ x✝¹ x✝² : ι) (x✝³ : x✝ x✝¹) (x✝⁴ : x✝ x✝²) (x✝⁵ : x✝¹ x✝²) :
              (AlgebraicGeometry.disjointGlueData' f).t' x✝ x✝¹ x✝² x✝³ x✝⁴ x✝⁵ = CategoryTheory.CategoryStruct.comp (CategoryTheory.Limits.pullback.fst ((fun (x x_1 : ι) (x_2 : x x_1) => (f x).emptyTo) x✝ x✝¹ x✝³) ((fun (x x_1 : ι) (x_2 : x x_1) => (f x).emptyTo) x✝ x✝² x✝⁴)) (CategoryTheory.Limits.pullback ((fun (x x_1 : ι) (x_2 : x x_1) => (f x).emptyTo) x✝¹ x✝² x✝⁵) ((fun (x x_1 : ι) (x_2 : x x_1) => (f x).emptyTo) x✝¹ x✝ )).emptyTo
              @[simp]
              theorem AlgebraicGeometry.disjointGlueData'_t {ι : Type u} (f : ιAlgebraicGeometry.Scheme) (x✝ x✝¹ : ι) (x✝² : x✝ x✝¹) :
              (AlgebraicGeometry.disjointGlueData' f).t x✝ x✝¹ x✝² = CategoryTheory.CategoryStruct.id ((fun (x x_1 : ι) (x : x x_1) => ) x✝ x✝¹ x✝²)
              @[simp]
              theorem AlgebraicGeometry.disjointGlueData'_f {ι : Type u} (f : ιAlgebraicGeometry.Scheme) (x✝ x✝¹ : ι) (x✝² : x✝ x✝¹) :
              (AlgebraicGeometry.disjointGlueData' f).f x✝ x✝¹ x✝² = (f x✝).emptyTo
              @[simp]
              theorem AlgebraicGeometry.disjointGlueData'_V {ι : Type u} (f : ιAlgebraicGeometry.Scheme) (x✝ x✝¹ : ι) (x✝² : x✝ x✝¹) :
              (AlgebraicGeometry.disjointGlueData' f).V x✝ x✝¹ x✝² =

              (Implementation Detail) The glue data associated to a disjoint union.

              Equations
              Instances For

                (Implementation Detail) The cofan in LocallyRingedSpace associated to a disjoint union.

                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  (Implementation Detail) The cofan in LocallyRingedSpace associated to a disjoint union is a colimit.

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For

                    (Implementation Detail) Coproduct of schemes is isomorphic to the disjoint union.

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      theorem AlgebraicGeometry.sigmaι_eq_iff {ι : Type u} (f : ιAlgebraicGeometry.Scheme) (i j : ι) (x : (f i).toPresheafedSpace) (y : (f j).toPresheafedSpace) :
                      (CategoryTheory.Limits.Sigma.ι f i).base x = (CategoryTheory.Limits.Sigma.ι f j).base y i, x = j, y
                      theorem AlgebraicGeometry.exists_sigmaι_eq {ι : Type u} (f : ιAlgebraicGeometry.Scheme) (x : ( f).toPresheafedSpace) :
                      ∃ (i : ι) (y : (f i).toPresheafedSpace), (CategoryTheory.Limits.Sigma.ι f i).base y = x
                      noncomputable def AlgebraicGeometry.sigmaOpenCover {ι : Type u} (f : ιAlgebraicGeometry.Scheme) :
                      ( f).OpenCover

                      The open cover of the coproduct.

                      Equations
                      Instances For
                        @[simp]
                        theorem AlgebraicGeometry.sigmaOpenCover_obj {ι : Type u} (f : ιAlgebraicGeometry.Scheme) (a✝ : ι) :
                        noncomputable def AlgebraicGeometry.sigmaMk {ι : Type u} (f : ιAlgebraicGeometry.Scheme) :
                        (i : ι) × (f i).toPresheafedSpace ≃ₜ ( f).toPresheafedSpace

                        The underlying topological space of the coproduct is homeomorphic to the disjoint union.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem AlgebraicGeometry.sigmaMk_mk {ι : Type u} (f : ιAlgebraicGeometry.Scheme) (i : ι) (x : (f i).toPresheafedSpace) :

                          (Implementation Detail) The coproduct of the two schemes is given by indexed coproducts over WalkingPair.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For
                            noncomputable def AlgebraicGeometry.coprodMk (X Y : AlgebraicGeometry.Scheme) :
                            X.toPresheafedSpace Y.toPresheafedSpace ≃ₜ (X ⨿ Y).toPresheafedSpace

                            The underlying topological space of the coproduct is homeomorphic to the disjoint union

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              noncomputable def AlgebraicGeometry.coprodOpenCover (X Y : AlgebraicGeometry.Scheme) :
                              (X ⨿ Y).OpenCover

                              The open cover of the coproduct of two schemes.

                              Equations
                              • One or more equations did not get rendered due to their size.
                              Instances For

                                The map Spec R ⨿ Spec S ⟶ Spec (R × S). This is an isomorphism as witnessed by an IsIso instance provided below.

                                Equations
                                • One or more equations did not get rendered due to their size.
                                Instances For
                                  noncomputable def AlgebraicGeometry.sigmaSpec {ι : Type u} (R : ιCommRingCat) :
                                  ( fun (i : ι) => AlgebraicGeometry.Spec (R i)) AlgebraicGeometry.Spec (CommRingCat.of ((i : ι) → (R i)))

                                  The canonical map ∐ Spec Rᵢ ⟶ Spec (Π Rᵢ). This is an isomorphism when the product is finite.

                                  Equations
                                  Instances For