Centroid homomorphisms on Star Rings #
When a (non unital, non-associative) semi-ring is equipped with an involutive automorphism the center of the centroid becomes a star ring in a natural way and the natural mapping of the centre of the semi-ring into the centre of the centroid becomes a *-homomorphism.
Tags #
centroid
instance
CentroidHom.instStar
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
:
Star (CentroidHom α)
Equations
- CentroidHom.instStar = { star := fun (f : CentroidHom α) => { toFun := fun (a : α) => star (f (star a)), map_zero' := ⋯, map_add' := ⋯, map_mul_left' := ⋯, map_mul_right' := ⋯ } }
@[simp]
theorem
CentroidHom.star_apply
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
(f : CentroidHom α)
(a : α)
:
Equations
instance
CentroidHom.instStarSubtypeMemSubsemiringCenter
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
:
Star ↥(Subsemiring.center (CentroidHom α))
Equations
- CentroidHom.instStarSubtypeMemSubsemiringCenter = { star := fun (f : ↥(Subsemiring.center (CentroidHom α))) => ⟨star ↑f, ⋯⟩ }
instance
CentroidHom.instStarAddMonoidCenter
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
:
Equations
instance
CentroidHom.instStarRingSubtypeMemSubsemiringCenter
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
:
def
CentroidHom.centerStarEmbedding
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
:
↥(Subsemiring.center (CentroidHom α)) →⋆ₙ+* CentroidHom α
The canonical *-homomorphism embedding the center of CentroidHom α
into CentroidHom α
.
Equations
- CentroidHom.centerStarEmbedding = { toNonUnitalRingHom := (SubsemiringClass.subtype (Subsemiring.center (CentroidHom α))).toNonUnitalRingHom, map_star' := ⋯ }
Instances For
theorem
CentroidHom.star_centerToCentroidCenter
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
(z : ↥(NonUnitalStarSubsemiring.center α))
:
def
CentroidHom.starCenterToCentroidCenter
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
:
The canonical *-homomorphism from the center of a non-unital, non-associative *-semiring into the center of its centroid.
Equations
- CentroidHom.starCenterToCentroidCenter = { toNonUnitalRingHom := CentroidHom.centerToCentroidCenter, map_star' := ⋯ }
Instances For
The canonical homomorphism from the center into the centroid
Equations
Instances For
theorem
CentroidHom.starCenterToCentroid_apply
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
(z : ↥(NonUnitalStarSubsemiring.center α))
(a : α)
:
@[reducible]
def
CentroidHom.starRingOfCommCentroidHom
{α : Type u_1}
[NonUnitalNonAssocSemiring α]
[StarRing α]
(mul_comm : Std.Commutative fun (x1 x2 : CentroidHom α) => x1 * x2)
:
StarRing (CentroidHom α)
Let α
be a star ring with commutative centroid. Then the centroid is a star ring.
Equations
- CentroidHom.starRingOfCommCentroidHom mul_comm = StarRing.mk ⋯
Instances For
The canonical isomorphism from the center of a (non-associative) semiring onto its centroid.
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
CentroidHom.starCenterIsoCentroid_apply
{α : Type u_1}
[NonAssocSemiring α]
[StarRing α]
(a : ↥(NonUnitalStarSubsemiring.center α))
:
CentroidHom.starCenterIsoCentroid a = CentroidHom.starCenterToCentroid a
@[simp]
theorem
CentroidHom.starCenterIsoCentroid_symm_apply_coe
{α : Type u_1}
[NonAssocSemiring α]
[StarRing α]
(T : CentroidHom α)
:
↑(CentroidHom.starCenterIsoCentroid.symm T) = T 1