Documentation

Mathlib.Algebra.Star.CentroidHom

Centroid homomorphisms on Star Rings #

When a (non unital, non-associative) semi-ring is equipped with an involutive automorphism the center of the centroid becomes a star ring in a natural way and the natural mapping of the centre of the semi-ring into the centre of the centroid becomes a *-homomorphism.

Tags #

centroid

Equations
@[simp]
theorem CentroidHom.star_apply {α : Type u_1} [NonUnitalNonAssocSemiring α] [StarRing α] (f : CentroidHom α) (a : α) :
(star f) a = star (f (star a))

The canonical *-homomorphism embedding the center of CentroidHom α into CentroidHom α.

Equations
Instances For
    theorem CentroidHom.star_centerToCentroidCenter {α : Type u_1} [NonUnitalNonAssocSemiring α] [StarRing α] (z : (NonUnitalStarSubsemiring.center α)) :
    star (CentroidHom.centerToCentroidCenter z) = CentroidHom.centerToCentroidCenter (star z)

    The canonical *-homomorphism from the center of a non-unital, non-associative *-semiring into the center of its centroid.

    Equations
    Instances For
      theorem CentroidHom.starCenterToCentroid_apply {α : Type u_1} [NonUnitalNonAssocSemiring α] [StarRing α] (z : (NonUnitalStarSubsemiring.center α)) (a : α) :
      (CentroidHom.starCenterToCentroid z) a = z * a
      @[reducible]

      Let α be a star ring with commutative centroid. Then the centroid is a star ring.

      Equations
      Instances For

        The canonical isomorphism from the center of a (non-associative) semiring onto its centroid.

        Equations
        • One or more equations did not get rendered due to their size.
        Instances For
          @[simp]
          theorem CentroidHom.starCenterIsoCentroid_apply {α : Type u_1} [NonAssocSemiring α] [StarRing α] (a : (NonUnitalStarSubsemiring.center α)) :
          CentroidHom.starCenterIsoCentroid a = CentroidHom.starCenterToCentroid a