Documentation

Mathlib.Algebra.Star.Subsemiring

Star subrings #

A *-subring is a subring of a *-ring which is closed under *.

A (unital) star subsemiring is a non-associative ring which is closed under the star operation.

    Instances For
      theorem StarSubsemiring.star_mem' {R : Type v} [NonAssocSemiring R] [Star R] (self : StarSubsemiring R) {a : R} :
      a self.carrierstar a self.carrier

      The carrier of a StarSubsemiring is closed under the star operation.

      Equations
      • StarSubsemiring.setLike = { coe := fun {s : StarSubsemiring R} => s.carrier, coe_injective' := }
      Equations
      Equations
      • s.semiring = s.toNonAssocSemiring
      @[simp]
      theorem StarSubsemiring.mem_carrier {R : Type v} [NonAssocSemiring R] [StarRing R] {s : StarSubsemiring R} {x : R} :
      x s.carrier x s
      theorem StarSubsemiring.ext {R : Type v} [NonAssocSemiring R] [StarRing R] {S : StarSubsemiring R} {T : StarSubsemiring R} (h : ∀ (x : R), x S x T) :
      S = T
      @[simp]
      theorem StarSubsemiring.coe_mk {R : Type v} [NonAssocSemiring R] [StarRing R] (S : Subsemiring R) (h : ∀ {a : R}, a S.carrierstar a S.carrier) :
      { toSubsemiring := S, star_mem' := h } = S
      @[simp]
      theorem StarSubsemiring.mem_toSubsemiring {R : Type v} [NonAssocSemiring R] [StarRing R] {S : StarSubsemiring R} {x : R} :
      x S.toSubsemiring x S
      @[simp]
      theorem StarSubsemiring.coe_toSubsemiring {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) :
      S.toSubsemiring = S
      theorem StarSubsemiring.toSubsemiring_inj {R : Type v} [NonAssocSemiring R] [StarRing R] {S : StarSubsemiring R} {U : StarSubsemiring R} :
      S.toSubsemiring = U.toSubsemiring S = U
      theorem StarSubsemiring.toSubsemiring_le_iff {R : Type v} [NonAssocSemiring R] [StarRing R] {S₁ : StarSubsemiring R} {S₂ : StarSubsemiring R} :
      S₁.toSubsemiring S₂.toSubsemiring S₁ S₂
      def StarSubsemiring.copy {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) (s : Set R) (hs : s = S) :

      Copy of a non-unital star subalgebra with a new carrier equal to the old one. Useful to fix definitional equalities.

      Equations
      • S.copy s hs = { toSubsemiring := S.copy s hs, star_mem' := }
      Instances For
        @[simp]
        theorem StarSubsemiring.coe_copy {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) (s : Set R) (hs : s = S) :
        (S.copy s hs) = s
        theorem StarSubsemiring.copy_eq {R : Type v} [NonAssocSemiring R] [StarRing R] (S : StarSubsemiring R) (s : Set R) (hs : s = S) :
        S.copy s hs = S

        The center of a semiring R is the set of elements that commute and associate with everything in R

        Equations
        Instances For

          The center of magma A is the set of elements that commute and associate with everything in A, here realized as a SubStarSemigroup.

          Equations
          Instances For