Group action on rings applied to polynomials #
This file contains instances and definitions relating MulSemiringAction
to Polynomial
.
theorem
Polynomial.smul_eq_map
{M : Type u_1}
[Monoid M]
(R : Type u_2)
[Semiring R]
[MulSemiringAction M R]
(m : M)
:
noncomputable instance
Polynomial.instMulSemiringAction
(M : Type u_1)
[Monoid M]
(R : Type u_2)
[Semiring R]
[MulSemiringAction M R]
:
MulSemiringAction M (Polynomial R)
Equations
@[simp]
theorem
Polynomial.smul_X
{M : Type u_1}
[Monoid M]
{R : Type u_2}
[Semiring R]
[MulSemiringAction M R]
(m : M)
:
theorem
Polynomial.smul_eval_smul
{M : Type u_1}
[Monoid M]
(S : Type u_3)
[CommSemiring S]
[MulSemiringAction M S]
(m : M)
(f : Polynomial S)
(x : S)
:
Polynomial.eval (m • x) (m • f) = m • Polynomial.eval x f
theorem
Polynomial.eval_smul'
(S : Type u_3)
[CommSemiring S]
(G : Type u_4)
[Group G]
[MulSemiringAction G S]
(g : G)
(f : Polynomial S)
(x : S)
:
Polynomial.eval (g • x) f = g • Polynomial.eval x (g⁻¹ • f)
theorem
Polynomial.smul_eval
(S : Type u_3)
[CommSemiring S]
(G : Type u_4)
[Group G]
[MulSemiringAction G S]
(g : G)
(f : Polynomial S)
(x : S)
:
Polynomial.eval x (g • f) = g • Polynomial.eval (g⁻¹ • x) f
noncomputable def
prodXSubSMul
(G : Type u_2)
[Group G]
[Fintype G]
(R : Type u_3)
[CommRing R]
[MulSemiringAction G R]
(x : R)
:
the product of (X - g • x)
over distinct g • x
.
Equations
- prodXSubSMul G R x = ∏ g : G ⧸ MulAction.stabilizer G x, (Polynomial.X - Polynomial.C (MulAction.ofQuotientStabilizer G x g))
Instances For
theorem
prodXSubSMul.monic
(G : Type u_2)
[Group G]
[Fintype G]
(R : Type u_3)
[CommRing R]
[MulSemiringAction G R]
(x : R)
:
(prodXSubSMul G R x).Monic
theorem
prodXSubSMul.eval
(G : Type u_2)
[Group G]
[Fintype G]
(R : Type u_3)
[CommRing R]
[MulSemiringAction G R]
(x : R)
:
Polynomial.eval x (prodXSubSMul G R x) = 0
theorem
prodXSubSMul.smul
(G : Type u_2)
[Group G]
[Fintype G]
(R : Type u_3)
[CommRing R]
[MulSemiringAction G R]
(x : R)
(g : G)
:
g • prodXSubSMul G R x = prodXSubSMul G R x
theorem
prodXSubSMul.coeff
(G : Type u_2)
[Group G]
[Fintype G]
(R : Type u_3)
[CommRing R]
[MulSemiringAction G R]
(x : R)
(g : G)
(n : ℕ)
:
g • (prodXSubSMul G R x).coeff n = (prodXSubSMul G R x).coeff n
noncomputable def
MulSemiringActionHom.polynomial
{M : Type u_1}
[Monoid M]
{P : Type u_2}
[CommSemiring P]
[MulSemiringAction M P]
{Q : Type u_3}
[CommSemiring Q]
[MulSemiringAction M Q]
(g : P →+*[M] Q)
:
Polynomial P →+*[M] Polynomial Q
An equivariant map induces an equivariant map on polynomials.
Equations
- g.polynomial = { toFun := Polynomial.map ↑g, map_smul' := ⋯, map_zero' := ⋯, map_add' := ⋯, map_one' := ⋯, map_mul' := ⋯ }
Instances For
@[simp]
theorem
MulSemiringActionHom.coe_polynomial
{M : Type u_1}
[Monoid M]
{P : Type u_2}
[CommSemiring P]
[MulSemiringAction M P]
{Q : Type u_3}
[CommSemiring Q]
[MulSemiringAction M Q]
(g : P →+*[M] Q)
:
⇑g.polynomial = Polynomial.map ↑g