Algebraic structures on the set of positive numbers #
In this file we prove that the set of positive elements of a linear ordered field is a linear ordered commutative group.
Equations
- Positive.Subtype.inv = { inv := fun (x : { x : K // 0 < x }) => ⟨(↑x)⁻¹, ⋯⟩ }
@[simp]
Equations
- Positive.instPowSubtypeLtOfNatInt_mathlib = { pow := fun (x : { x : K // 0 < x }) (n : ℤ) => ⟨↑x ^ n, ⋯⟩ }
@[simp]
instance
Positive.instLinearOrderedCommGroupSubtypeLtOfNat
{K : Type u_1}
[LinearOrderedField K]
:
LinearOrderedCommGroup { x : K // 0 < x }
Equations
- One or more equations did not get rendered due to their size.