Documentation

Mathlib.Algebra.Order.Kleene

Kleene Algebras #

This file defines idempotent semirings and Kleene algebras, which are used extensively in the theory of computation.

An idempotent semiring is a semiring whose addition is idempotent. An idempotent semiring is naturally a semilattice by setting a ≤ b if a + b = b.

A Kleene algebra is an idempotent semiring equipped with an additional unary operator , the Kleene star.

Main declarations #

Notation #

a∗ is notation for kstar a in locale Computability.

References #

TODO #

Instances for AddOpposite, MulOpposite, ULift, Subsemiring, Subring, Subalgebra.

Tags #

kleene algebra, idempotent semiring

theorem IdemSemiring.add_eq_sup {α : Type u} [self : IdemSemiring α] (a : α) (b : α) :
a + b = a b
theorem IdemSemiring.bot_le {α : Type u} [self : IdemSemiring α] (a : α) :
IdemSemiring.bot a
class KStar (α : Type u_5) :
Type u_5

Notation typeclass for the Kleene star .

  • kstar : αα

    The Kleene star operator on a Kleene algebra

Instances

    The Kleene star operator on a Kleene algebra

    Equations
    Instances For

      A Kleene Algebra is an idempotent semiring with an additional unary operator kstar (for Kleene star) that satisfies the following properties:

      • 1 + a * a∗ ≤ a∗
      • 1 + a∗ * a ≤ a∗
      • If a * c + b ≤ c, then a∗ * b ≤ c
      • If c * a + b ≤ c, then b * a∗ ≤ c
        Instances
          theorem KleeneAlgebra.one_le_kstar {α : Type u_5} [self : KleeneAlgebra α] (a : α) :
          theorem KleeneAlgebra.mul_kstar_le_self {α : Type u_5} [self : KleeneAlgebra α] (a : α) (b : α) :
          b * a bb * KStar.kstar a b
          theorem KleeneAlgebra.kstar_mul_le_self {α : Type u_5} [self : KleeneAlgebra α] (a : α) (b : α) :
          a * b bKStar.kstar a * b b
          @[instance 100]
          instance IdemSemiring.toOrderBot {α : Type u_1} [IdemSemiring α] :
          Equations
          @[reducible, inline]
          abbrev IdemSemiring.ofSemiring {α : Type u_1} [Semiring α] (h : ∀ (a : α), a + a = a) :

          Construct an idempotent semiring from an idempotent addition.

          Equations
          Instances For
            theorem add_eq_sup {α : Type u_1} [IdemSemiring α] (a : α) (b : α) :
            a + b = a b
            theorem add_idem {α : Type u_1} [IdemSemiring α] (a : α) :
            a + a = a
            theorem nsmul_eq_self {α : Type u_1} [IdemSemiring α] {n : } :
            n 0∀ (a : α), n a = a
            theorem add_eq_left_iff_le {α : Type u_1} [IdemSemiring α] {a : α} {b : α} :
            a + b = a b a
            theorem add_eq_right_iff_le {α : Type u_1} [IdemSemiring α] {a : α} {b : α} :
            a + b = b a b
            theorem LE.le.add_eq_left {α : Type u_1} [IdemSemiring α] {a : α} {b : α} :
            b aa + b = a

            Alias of the reverse direction of add_eq_left_iff_le.

            theorem LE.le.add_eq_right {α : Type u_1} [IdemSemiring α] {a : α} {b : α} :
            a ba + b = b

            Alias of the reverse direction of add_eq_right_iff_le.

            theorem add_le_iff {α : Type u_1} [IdemSemiring α] {a : α} {b : α} {c : α} :
            a + b c a c b c
            theorem add_le {α : Type u_1} [IdemSemiring α] {a : α} {b : α} {c : α} (ha : a c) (hb : b c) :
            a + b c
            @[instance 100]
            Equations
            @[instance 100]
            Equations
            • =
            @[instance 100]
            Equations
            • =
            @[simp]
            theorem one_le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} :
            theorem mul_kstar_le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} :
            theorem kstar_mul_le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} :
            theorem mul_kstar_le_self {α : Type u_1} [KleeneAlgebra α] {a : α} {b : α} :
            b * a bb * KStar.kstar a b
            theorem kstar_mul_le_self {α : Type u_1} [KleeneAlgebra α] {a : α} {b : α} :
            a * b bKStar.kstar a * b b
            theorem mul_kstar_le {α : Type u_1} [KleeneAlgebra α] {a : α} {b : α} {c : α} (hb : b c) (ha : c * a c) :
            theorem kstar_mul_le {α : Type u_1} [KleeneAlgebra α] {a : α} {b : α} {c : α} (hb : b c) (ha : a * c c) :
            theorem kstar_le_of_mul_le_left {α : Type u_1} [KleeneAlgebra α] {a : α} {b : α} (hb : 1 b) :
            b * a bKStar.kstar a b
            theorem kstar_le_of_mul_le_right {α : Type u_1} [KleeneAlgebra α] {a : α} {b : α} (hb : 1 b) :
            a * b bKStar.kstar a b
            @[simp]
            theorem le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} :
            theorem kstar_mono {α : Type u_1} [KleeneAlgebra α] :
            Monotone KStar.kstar
            @[simp]
            theorem kstar_eq_one {α : Type u_1} [KleeneAlgebra α] {a : α} :
            @[simp]
            theorem kstar_zero {α : Type u_1} [KleeneAlgebra α] :
            @[simp]
            theorem kstar_one {α : Type u_1} [KleeneAlgebra α] :
            @[simp]
            theorem kstar_mul_kstar {α : Type u_1} [KleeneAlgebra α] (a : α) :
            @[simp]
            theorem kstar_eq_self {α : Type u_1} [KleeneAlgebra α] {a : α} :
            KStar.kstar a = a a * a = a 1 a
            @[simp]
            theorem kstar_idem {α : Type u_1} [KleeneAlgebra α] (a : α) :
            @[simp]
            theorem pow_le_kstar {α : Type u_1} [KleeneAlgebra α] {a : α} {n : } :
            instance Prod.instIdemSemiring {α : Type u_1} {β : Type u_2} [IdemSemiring α] [IdemSemiring β] :
            Equations
            instance Prod.instIdemCommSemiring {α : Type u_1} {β : Type u_2} [IdemCommSemiring α] [IdemCommSemiring β] :
            Equations
            instance Prod.instKleeneAlgebra {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [KleeneAlgebra β] :
            Equations
            theorem Prod.kstar_def {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [KleeneAlgebra β] (a : α × β) :
            @[simp]
            theorem Prod.fst_kstar {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [KleeneAlgebra β] (a : α × β) :
            @[simp]
            theorem Prod.snd_kstar {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [KleeneAlgebra β] (a : α × β) :
            instance Pi.instIdemSemiring {ι : Type u_3} {π : ιType u_4} [(i : ι) → IdemSemiring (π i)] :
            IdemSemiring ((i : ι) → π i)
            Equations
            instance Pi.instIdemCommSemiringForall {ι : Type u_3} {π : ιType u_4} [(i : ι) → IdemCommSemiring (π i)] :
            IdemCommSemiring ((i : ι) → π i)
            Equations
            instance Pi.instKleeneAlgebraForall {ι : Type u_3} {π : ιType u_4} [(i : ι) → KleeneAlgebra (π i)] :
            KleeneAlgebra ((i : ι) → π i)
            Equations
            theorem Pi.kstar_def {ι : Type u_3} {π : ιType u_4} [(i : ι) → KleeneAlgebra (π i)] (a : (i : ι) → π i) :
            KStar.kstar a = fun (i : ι) => KStar.kstar (a i)
            @[simp]
            theorem Pi.kstar_apply {ι : Type u_3} {π : ιType u_4} [(i : ι) → KleeneAlgebra (π i)] (a : (i : ι) → π i) (i : ι) :
            @[reducible, inline]
            abbrev Function.Injective.idemSemiring {α : Type u_1} {β : Type u_2} [IdemSemiring α] [Zero β] [One β] [Add β] [Mul β] [Pow β ] [SMul β] [NatCast β] [Sup β] [Bot β] (f : βα) (hf : Function.Injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : β), f (x + y) = f x + f y) (mul : ∀ (x y : β), f (x * y) = f x * f y) (nsmul : ∀ (n : ) (x : β), f (n x) = n f x) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (natCast : ∀ (n : ), f n = n) (sup : ∀ (a b : β), f (a b) = f a f b) (bot : f = ) :

            Pullback an IdemSemiring instance along an injective function.

            Equations
            Instances For
              @[reducible, inline]
              abbrev Function.Injective.idemCommSemiring {α : Type u_1} {β : Type u_2} [IdemCommSemiring α] [Zero β] [One β] [Add β] [Mul β] [Pow β ] [SMul β] [NatCast β] [Sup β] [Bot β] (f : βα) (hf : Function.Injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : β), f (x + y) = f x + f y) (mul : ∀ (x y : β), f (x * y) = f x * f y) (nsmul : ∀ (n : ) (x : β), f (n x) = n f x) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (natCast : ∀ (n : ), f n = n) (sup : ∀ (a b : β), f (a b) = f a f b) (bot : f = ) :

              Pullback an IdemCommSemiring instance along an injective function.

              Equations
              Instances For
                @[reducible, inline]
                abbrev Function.Injective.kleeneAlgebra {α : Type u_1} {β : Type u_2} [KleeneAlgebra α] [Zero β] [One β] [Add β] [Mul β] [Pow β ] [SMul β] [NatCast β] [Sup β] [Bot β] [KStar β] (f : βα) (hf : Function.Injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : β), f (x + y) = f x + f y) (mul : ∀ (x y : β), f (x * y) = f x * f y) (nsmul : ∀ (n : ) (x : β), f (n x) = n f x) (npow : ∀ (x : β) (n : ), f (x ^ n) = f x ^ n) (natCast : ∀ (n : ), f n = n) (sup : ∀ (a b : β), f (a b) = f a f b) (bot : f = ) (kstar : ∀ (a : β), f (KStar.kstar a) = KStar.kstar (f a)) :

                Pullback a KleeneAlgebra instance along an injective function.

                Equations
                Instances For