Documentation

Mathlib.Algebra.Homology.ShortComplex.ConcreteCategory

Exactness of short complexes in concrete abelian categories #

If an additive concrete category C has an additive forgetful functor to Ab which preserves homology, then a short complex S in C is exact if and only if it is so after applying the functor forget₂ C Ab.

Constructor for cycles of short complexes in a concrete category.

Equations
Instances For
    @[simp]
    theorem CategoryTheory.ShortComplex.i_cyclesMk {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] [CategoryTheory.HasForget₂ C Ab] [CategoryTheory.Preadditive C] [(CategoryTheory.forget₂ C Ab).Additive] [(CategoryTheory.forget₂ C Ab).PreservesHomology] (S : CategoryTheory.ShortComplex C) [S.HasHomology] (x₂ : ((CategoryTheory.forget₂ C Ab).obj S.X₂)) (hx₂ : ((CategoryTheory.forget₂ C Ab).map S.g) x₂ = 0) :
    ((CategoryTheory.forget₂ C Ab).map S.iCycles) (S.cyclesMk x₂ hx₂) = x₂
    theorem CategoryTheory.ShortComplex.SnakeInput.δ_apply {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] [CategoryTheory.HasForget₂ C Ab] [CategoryTheory.Abelian C] [(CategoryTheory.forget₂ C Ab).Additive] [(CategoryTheory.forget₂ C Ab).PreservesHomology] (D : CategoryTheory.ShortComplex.SnakeInput C) (x₃ : (CategoryTheory.forget C).obj D.L₀.X₃) (x₂ : (CategoryTheory.forget C).obj D.L₁.X₂) (x₁ : (CategoryTheory.forget C).obj D.L₂.X₁) (h₂ : D.L₁.g x₂ = D.v₀₁.τ₃ x₃) (h₁ : D.L₂.f x₁ = D.v₁₂.τ₂ x₂) :
    D x₃ = D.v₂₃.τ₁ x₁

    This lemma allows the computation of the connecting homomorphism D.δ when D : SnakeInput C and C is a concrete category.

    theorem CategoryTheory.ShortComplex.SnakeInput.δ_apply' {C : Type u} [CategoryTheory.Category.{v, u} C] [CategoryTheory.ConcreteCategory C] [CategoryTheory.HasForget₂ C Ab] [CategoryTheory.Abelian C] [(CategoryTheory.forget₂ C Ab).Additive] [(CategoryTheory.forget₂ C Ab).PreservesHomology] (D : CategoryTheory.ShortComplex.SnakeInput C) (x₃ : ((CategoryTheory.forget₂ C Ab).obj D.L₀.X₃)) (x₂ : ((CategoryTheory.forget₂ C Ab).obj D.L₁.X₂)) (x₁ : ((CategoryTheory.forget₂ C Ab).obj D.L₂.X₁)) (h₂ : ((CategoryTheory.forget₂ C Ab).map D.L₁.g) x₂ = ((CategoryTheory.forget₂ C Ab).map D.v₀₁.τ₃) x₃) (h₁ : ((CategoryTheory.forget₂ C Ab).map D.L₂.f) x₁ = ((CategoryTheory.forget₂ C Ab).map D.v₁₂.τ₂) x₂) :
    ((CategoryTheory.forget₂ C Ab).map D) x₃ = ((CategoryTheory.forget₂ C Ab).map D.v₂₃.τ₁) x₁

    This lemma allows the computation of the connecting homomorphism D.δ when D : SnakeInput C and C is a concrete category.