Documentation

Mathlib.Algebra.Homology.Embedding.TruncLE

The canonical truncation #

Given an embedding e : Embedding c c' of complex shapes which satisfies e.IsTruncLE and K : HomologicalComplex C c', we define K.truncGE' e : HomologicalComplex C c and K.truncLE e : HomologicalComplex C c' which are the canonical truncations of K relative to e.

In order to achieve this, we dualize the constructions from the file Embedding.TruncGE.

noncomputable def HomologicalComplex.truncLE' {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] :

The canonical truncation of a homological complex relative to an embedding of complex shapes e which satisfies e.IsTruncLE.

Equations
  • K.truncLE' e = (K.op.truncGE' e.op).unop
Instances For
    noncomputable def HomologicalComplex.truncLE'XIso {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] {i : ι} {i' : ι'} (hi' : e.f i = i') (hi : ¬e.BoundaryLE i) :
    (K.truncLE' e).X i K.X i'

    The isomorphism (K.truncLE' e).X i ≅ K.X i' when e.f i = i' and e.BoundaryLE i does not hold.

    Equations
    • K.truncLE'XIso e hi' hi = (K.op.truncGE'XIso e.op hi' ).symm.unop
    Instances For
      noncomputable def HomologicalComplex.truncLE'XIsoCycles {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] {i : ι} {i' : ι'} (hi' : e.f i = i') (hi : e.BoundaryLE i) :
      (K.truncLE' e).X i K.cycles i'

      The isomorphism (K.truncLE' e).X i ≅ K.cycles i' when e.f i = i' and e.BoundaryLE i holds.

      Equations
      • K.truncLE'XIsoCycles e hi' hi = (K.op.truncGE'XIsoOpcycles e.op hi' ).unop.symm ≪≫ (K.opcyclesOpIso i').unop.symm
      Instances For
        theorem HomologicalComplex.truncLE'_d_eq {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] {i j : ι} (hij : c.Rel i j) {i' j' : ι'} (hi' : e.f i = i') (hj' : e.f j = j') (hj : ¬e.BoundaryLE j) :
        (K.truncLE' e).d i j = CategoryTheory.CategoryStruct.comp (K.truncLE'XIso e hi' ).hom (CategoryTheory.CategoryStruct.comp (K.d i' j') (K.truncLE'XIso e hj' hj).inv)
        theorem HomologicalComplex.truncLE'_d_eq_toCycles {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] {i j : ι} (hij : c.Rel i j) {i' j' : ι'} (hi' : e.f i = i') (hj' : e.f j = j') (hj : e.BoundaryLE j) :
        (K.truncLE' e).d i j = CategoryTheory.CategoryStruct.comp (K.truncLE'XIso e hi' ).hom (CategoryTheory.CategoryStruct.comp (K.toCycles i' j') (K.truncLE'XIsoCycles e hj' hj).inv)
        noncomputable def HomologicalComplex.truncLE {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :

        The canonical truncation of a homological complex relative to an embedding of complex shapes e which satisfies e.IsTruncLE.

        Equations
        • K.truncLE e = (K.op.truncGE e.op).unop
        Instances For
          noncomputable def HomologicalComplex.truncLEIso {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :
          K.truncLE e (K.truncLE' e).extend e

          The canonical isomorphism K.truncLE e ≅ (K.truncLE' e).extend e.

          Equations
          Instances For
            noncomputable def HomologicalComplex.truncLEXIso {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] {i : ι} {i' : ι'} (hi' : e.f i = i') (hi : ¬e.BoundaryLE i) :
            (K.truncLE e).X i' K.X i'

            The isomorphism (K.truncLE e).X i' ≅ K.X i' when e.f i = i' and e.BoundaryLE i does not hold.

            Equations
            • K.truncLEXIso e hi' hi = (K.op.truncGEXIso e.op hi' ).unop.symm
            Instances For
              noncomputable def HomologicalComplex.truncLEXIsoCycles {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] {i : ι} {i' : ι'} (hi' : e.f i = i') (hi : e.BoundaryLE i) :
              (K.truncLE e).X i' K.cycles i'

              The isomorphism (K.truncLE e).X i' ≅ K.cycles i' when e.f i = i' and e.BoundaryLE i holds.

              Equations
              • K.truncLEXIsoCycles e hi' hi = (K.op.truncGEXIsoOpcycles e.op hi' ).unop.symm ≪≫ (K.opcyclesOpIso i').unop.symm
              Instances For
                noncomputable def HomologicalComplex.truncLE'Map {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] :
                K.truncLE' e L.truncLE' e

                The morphism K.truncLE' e ⟶ L.truncLE' e induced by a morphism K ⟶ L.

                Equations
                Instances For
                  theorem HomologicalComplex.truncLE'Map_f_eq_cyclesMap {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] {i : ι} (hi : e.BoundaryLE i) {i' : ι'} (h : e.f i = i') :
                  (HomologicalComplex.truncLE'Map φ e).f i = CategoryTheory.CategoryStruct.comp (K.truncLE'XIsoCycles e h hi).hom (CategoryTheory.CategoryStruct.comp (HomologicalComplex.cyclesMap φ i') (L.truncLE'XIsoCycles e h hi).inv)
                  theorem HomologicalComplex.truncLE'Map_f_eq {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] {i : ι} (hi : ¬e.BoundaryLE i) {i' : ι'} (h : e.f i = i') :
                  (HomologicalComplex.truncLE'Map φ e).f i = CategoryTheory.CategoryStruct.comp (K.truncLE'XIso e h hi).hom (CategoryTheory.CategoryStruct.comp (φ.f i') (L.truncLE'XIso e h hi).inv)
                  @[simp]
                  theorem HomologicalComplex.truncLE'Map_id {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] :
                  @[simp]
                  theorem HomologicalComplex.truncLE'Map_comp {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L M : HomologicalComplex C c'} (φ : K L) (φ' : L M) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [∀ (i' : ι'), M.HasHomology i'] :
                  theorem HomologicalComplex.truncLE'Map_comp_assoc {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L M : HomologicalComplex C c'} (φ : K L) (φ' : L M) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [∀ (i' : ι'), M.HasHomology i'] {Z : HomologicalComplex C c} (h : M.truncLE' e Z) :
                  noncomputable def HomologicalComplex.truncLEMap {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :
                  K.truncLE e L.truncLE e

                  The morphism K.truncLE e ⟶ L.truncLE e induced by a morphism K ⟶ L.

                  Equations
                  Instances For
                    @[simp]
                    @[simp]
                    theorem HomologicalComplex.truncLEMap_comp {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L M : HomologicalComplex C c'} (φ : K L) (φ' : L M) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [∀ (i' : ι'), M.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :
                    theorem HomologicalComplex.truncLEMap_comp_assoc {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L M : HomologicalComplex C c'} (φ : K L) (φ' : L M) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [∀ (i' : ι'), M.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] {Z : HomologicalComplex C c'} (h : M.truncLE e Z) :
                    noncomputable def HomologicalComplex.truncLE'ToRestriction {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] :
                    K.truncLE' e K.restriction e

                    The canonical morphism K.truncLE' e ⟶ K.restriction e.

                    Equations
                    Instances For
                      theorem HomologicalComplex.isIso_truncLE'ToRestriction {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] (i : ι) (hi : ¬e.BoundaryLE i) :
                      CategoryTheory.IsIso ((K.truncLE'ToRestriction e).f i)

                      (K.truncLE'ToRestriction e).f i is an isomorphism when ¬ e.BoundaryLE i.

                      @[simp]
                      theorem HomologicalComplex.truncLE'ToRestriction_naturality {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] :
                      @[simp]
                      theorem HomologicalComplex.truncLE'ToRestriction_naturality_assoc {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] {Z : HomologicalComplex C c} (h : L.restriction e Z) :
                      instance HomologicalComplex.instMonoFTruncLE'ToRestriction {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] (i : ι) :
                      CategoryTheory.Mono ((K.truncLE'ToRestriction e).f i)
                      instance HomologicalComplex.instIsIsoFTruncLE'ToRestrictionOfIsStrictlySupported {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [K.IsStrictlySupported e] (i : ι) :
                      CategoryTheory.IsIso ((K.truncLE'ToRestriction e).f i)
                      noncomputable def HomologicalComplex.ιTruncLE {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :
                      K.truncLE e K

                      The canonical morphism K.truncLE e ⟶ K when e is an embedding of complex shapes which satisfy e.IsTruncLE.

                      Equations
                      Instances For
                        instance HomologicalComplex.instMonoFιTruncLE {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] (i' : ι') :
                        CategoryTheory.Mono ((K.ιTruncLE e).f i')
                        instance HomologicalComplex.instMonoιTruncLE {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :
                        CategoryTheory.Mono (K.ιTruncLE e)
                        instance HomologicalComplex.instIsStrictlySupportedTruncLE {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :
                        (K.truncLE e).IsStrictlySupported e
                        @[simp]
                        theorem HomologicalComplex.ιTruncLE_naturality {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] :
                        @[simp]
                        theorem HomologicalComplex.ιTruncLE_naturality_assoc {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] {K L : HomologicalComplex C c'} (φ : K L) (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [∀ (i' : ι'), L.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] {Z : HomologicalComplex C c'} (h : L Z) :
                        instance HomologicalComplex.instIsStrictlySupportedTruncLE_1 {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_5, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] {ι'' : Type u_4} {c'' : ComplexShape ι''} (e' : c''.Embedding c') [K.IsStrictlySupported e'] :
                        (K.truncLE e).IsStrictlySupported e'
                        instance HomologicalComplex.instIsIsoιTruncLEOfIsStrictlySupported {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} {C : Type u_3} [CategoryTheory.Category.{u_4, u_3} C] [CategoryTheory.Limits.HasZeroMorphisms C] (K : HomologicalComplex C c') (e : c.Embedding c') [e.IsTruncLE] [∀ (i' : ι'), K.HasHomology i'] [CategoryTheory.Limits.HasZeroObject C] [K.IsStrictlySupported e] :
                        CategoryTheory.IsIso (K.ιTruncLE e)

                        Given an embedding e : Embedding c c' of complex shapes which satisfy e.IsTruncLE, this is the (canonical) truncation functor HomologicalComplex C c' ⥤ HomologicalComplex C c.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          @[simp]
                          theorem ComplexShape.Embedding.truncLE'Functor_obj {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') [e.IsTruncLE] (C : Type u_4) [CategoryTheory.Category.{u_5, u_4} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.CategoryWithHomology C] (K : HomologicalComplex C c') :
                          (e.truncLE'Functor C).obj K = K.truncLE' e
                          @[simp]
                          theorem ComplexShape.Embedding.truncLE'Functor_map {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') [e.IsTruncLE] (C : Type u_4) [CategoryTheory.Category.{u_5, u_4} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.CategoryWithHomology C] {X✝ Y✝ : HomologicalComplex C c'} (φ : X✝ Y✝) :
                          (e.truncLE'Functor C).map φ = HomologicalComplex.truncLE'Map φ e
                          noncomputable def ComplexShape.Embedding.truncLE'ToRestrictionNatTrans {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') [e.IsTruncLE] (C : Type u_4) [CategoryTheory.Category.{u_5, u_4} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.CategoryWithHomology C] :
                          e.truncLE'Functor C e.restrictionFunctor C

                          The natural transformation K.truncGE' e ⟶ K.restriction e for all K.

                          Equations
                          • e.truncLE'ToRestrictionNatTrans C = { app := fun (K : HomologicalComplex C c') => K.truncLE'ToRestriction e, naturality := }
                          Instances For
                            @[simp]
                            theorem ComplexShape.Embedding.truncLE'ToRestrictionNatTrans_app {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') [e.IsTruncLE] (C : Type u_4) [CategoryTheory.Category.{u_5, u_4} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.CategoryWithHomology C] (K : HomologicalComplex C c') :
                            (e.truncLE'ToRestrictionNatTrans C).app K = K.truncLE'ToRestriction e

                            Given an embedding e : Embedding c c' of complex shapes which satisfy e.IsTruncLE, this is the (canonical) truncation functor HomologicalComplex C c' ⥤ HomologicalComplex C c'.

                            Equations
                            • One or more equations did not get rendered due to their size.
                            Instances For
                              @[simp]
                              theorem ComplexShape.Embedding.truncLEFunctor_obj {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') [e.IsTruncLE] (C : Type u_4) [CategoryTheory.Category.{u_5, u_4} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.CategoryWithHomology C] (K : HomologicalComplex C c') :
                              (e.truncLEFunctor C).obj K = K.truncLE e
                              @[simp]
                              theorem ComplexShape.Embedding.truncLEFunctor_map {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') [e.IsTruncLE] (C : Type u_4) [CategoryTheory.Category.{u_5, u_4} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.CategoryWithHomology C] {X✝ Y✝ : HomologicalComplex C c'} (φ : X✝ Y✝) :
                              (e.truncLEFunctor C).map φ = HomologicalComplex.truncLEMap φ e

                              The natural transformation K.ιTruncLE e : K.truncLE e ⟶ K for all K.

                              Equations
                              • e.ιTruncLENatTrans C = { app := fun (K : HomologicalComplex C c') => K.ιTruncLE e, naturality := }
                              Instances For
                                @[simp]
                                theorem ComplexShape.Embedding.ιTruncLENatTrans_app {ι : Type u_1} {ι' : Type u_2} {c : ComplexShape ι} {c' : ComplexShape ι'} (e : c.Embedding c') [e.IsTruncLE] (C : Type u_4) [CategoryTheory.Category.{u_5, u_4} C] [CategoryTheory.Limits.HasZeroMorphisms C] [CategoryTheory.Limits.HasZeroObject C] [CategoryTheory.CategoryWithHomology C] (K : HomologicalComplex C c') :
                                (e.ιTruncLENatTrans C).app K = K.ιTruncLE e