Long exact sequences of Ext
-groups #
In this file, we obtain the covariant long exact sequence of Ext
:
Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁
when S
is a short exact short complex in an abelian category C
, n₀ + 1 = n₁
and X : C
.
theorem
CategoryTheory.Abelian.Ext.hom_comp_singleFunctor_map_shift
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
[HasDerivedCategory C]
{X : C}
{Y : C}
{Z : C}
{n : ℕ}
(x : CategoryTheory.Abelian.Ext X Y n)
(f : Y ⟶ Z)
:
CategoryTheory.CategoryStruct.comp x.hom
((CategoryTheory.shiftFunctor (DerivedCategory C) ↑n).map ((DerivedCategory.singleFunctor C 0).map f)) = (x.comp (CategoryTheory.Abelian.Ext.mk₀ f) ⋯).hom
theorem
CategoryTheory.Abelian.Ext.preadditiveCoyoneda_homologySequenceδ_singleTriangle_apply
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
{S : CategoryTheory.ShortComplex C}
(hS : S.ShortExact)
[HasDerivedCategory C]
{X : C}
{n₀ : ℕ}
(x : CategoryTheory.Abelian.Ext X S.X₃ n₀)
{n₁ : ℕ}
(h : n₀ + 1 = n₁)
:
((CategoryTheory.preadditiveCoyoneda.obj (Opposite.op ((DerivedCategory.singleFunctor C 0).obj X))).homologySequenceδ
hS.singleTriangle ↑n₀ ↑n₁ ⋯)
x.hom = (x.comp hS.extClass h).hom
theorem
CategoryTheory.Abelian.Ext.covariant_sequence_exact₂'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
(X : C)
{S : CategoryTheory.ShortComplex C}
(hS : S.ShortExact)
(n : ℕ)
:
(CategoryTheory.ShortComplex.mk (AddCommGrp.ofHom ((CategoryTheory.Abelian.Ext.mk₀ S.f).postcomp X ⋯))
(AddCommGrp.ofHom ((CategoryTheory.Abelian.Ext.mk₀ S.g).postcomp X ⋯)) ⋯).Exact
Alternative formulation of covariant_sequence_exact₂
theorem
CategoryTheory.Abelian.Ext.covariant_sequence_exact₃'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
(X : C)
{S : CategoryTheory.ShortComplex C}
(hS : S.ShortExact)
(n₀ : ℕ)
(n₁ : ℕ)
(h : n₀ + 1 = n₁)
:
(CategoryTheory.ShortComplex.mk (AddCommGrp.ofHom ((CategoryTheory.Abelian.Ext.mk₀ S.g).postcomp X ⋯))
(AddCommGrp.ofHom (hS.extClass.postcomp X h)) ⋯).Exact
Alternative formulation of covariant_sequence_exact₃
theorem
CategoryTheory.Abelian.Ext.covariant_sequence_exact₁'
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
(X : C)
{S : CategoryTheory.ShortComplex C}
(hS : S.ShortExact)
(n₀ : ℕ)
(n₁ : ℕ)
(h : n₀ + 1 = n₁)
:
(CategoryTheory.ShortComplex.mk (AddCommGrp.ofHom (hS.extClass.postcomp X h))
(AddCommGrp.ofHom ((CategoryTheory.Abelian.Ext.mk₀ S.f).postcomp X ⋯)) ⋯).Exact
Alternative formulation of covariant_sequence_exact₁
noncomputable def
CategoryTheory.Abelian.Ext.covariantSequence
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
(X : C)
{S : CategoryTheory.ShortComplex C}
(hS : S.ShortExact)
(n₀ : ℕ)
(n₁ : ℕ)
(h : n₀ + 1 = n₁)
:
Given a short exact short complex S
in an abelian category C
and an object X : C
,
this is the long exact sequence
Ext X S.X₁ n₀ → Ext X S.X₂ n₀ → Ext X S.X₃ n₀ → Ext X S.X₁ n₁ → Ext X S.X₂ n₁ → Ext X S.X₃ n₁
when n₀ + 1 = n₁
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
CategoryTheory.Abelian.Ext.covariantSequence_exact
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
(X : C)
{S : CategoryTheory.ShortComplex C}
(hS : S.ShortExact)
(n₀ : ℕ)
(n₁ : ℕ)
(h : n₀ + 1 = n₁)
:
(CategoryTheory.Abelian.Ext.covariantSequence X hS n₀ n₁ h).Exact
theorem
CategoryTheory.Abelian.Ext.covariant_sequence_exact₁
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
(X : C)
{S : CategoryTheory.ShortComplex C}
(hS : S.ShortExact)
{n₁ : ℕ}
(x₁ : CategoryTheory.Abelian.Ext X S.X₁ n₁)
(hx₁ : x₁.comp (CategoryTheory.Abelian.Ext.mk₀ S.f) ⋯ = 0)
{n₀ : ℕ}
(hn₀ : n₀ + 1 = n₁)
:
∃ (x₃ : CategoryTheory.Abelian.Ext X S.X₃ n₀), x₃.comp hS.extClass hn₀ = x₁
theorem
CategoryTheory.Abelian.Ext.covariant_sequence_exact₂
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
(X : C)
{S : CategoryTheory.ShortComplex C}
(hS : S.ShortExact)
{n : ℕ}
(x₂ : CategoryTheory.Abelian.Ext X S.X₂ n)
(hx₂ : x₂.comp (CategoryTheory.Abelian.Ext.mk₀ S.g) ⋯ = 0)
:
∃ (x₁ : CategoryTheory.Abelian.Ext X S.X₁ n), x₁.comp (CategoryTheory.Abelian.Ext.mk₀ S.f) ⋯ = x₂
theorem
CategoryTheory.Abelian.Ext.covariant_sequence_exact₃
{C : Type u}
[CategoryTheory.Category.{v, u} C]
[CategoryTheory.Abelian C]
[CategoryTheory.HasExt C]
(X : C)
{S : CategoryTheory.ShortComplex C}
(hS : S.ShortExact)
{n₀ : ℕ}
(x₃ : CategoryTheory.Abelian.Ext X S.X₃ n₀)
{n₁ : ℕ}
(hn₁ : n₀ + 1 = n₁)
(hx₃ : x₃.comp hS.extClass hn₁ = 0)
:
∃ (x₂ : CategoryTheory.Abelian.Ext X S.X₂ n₀), x₂.comp (CategoryTheory.Abelian.Ext.mk₀ S.g) ⋯ = x₃