Documentation

Mathlib.Algebra.GroupWithZero.Subgroup

Subgroups in a group with zero #

@[simp]
theorem Subgroup.smul_mem_pointwise_smul_iff₀ {G₀ : Type u_1} {G : Type u_2} [GroupWithZero G₀] [Group G] [MulDistribMulAction G₀ G] {a : G₀} (ha : a 0) (S : Subgroup G) (x : G) :
a x a S x S
theorem Subgroup.mem_pointwise_smul_iff_inv_smul_mem₀ {G₀ : Type u_1} {G : Type u_2} [GroupWithZero G₀] [Group G] [MulDistribMulAction G₀ G] {a : G₀} (ha : a 0) (S : Subgroup G) (x : G) :
x a S a⁻¹ x S
theorem Subgroup.mem_inv_pointwise_smul_iff₀ {G₀ : Type u_1} {G : Type u_2} [GroupWithZero G₀] [Group G] [MulDistribMulAction G₀ G] {a : G₀} (ha : a 0) (S : Subgroup G) (x : G) :
x a⁻¹ S a x S
@[simp]
theorem Subgroup.pointwise_smul_le_pointwise_smul_iff₀ {G₀ : Type u_1} {G : Type u_2} [GroupWithZero G₀] [Group G] [MulDistribMulAction G₀ G] {S T : Subgroup G} {a : G₀} (ha : a 0) :
a S a T S T
theorem Subgroup.pointwise_smul_le_iff₀ {G₀ : Type u_1} {G : Type u_2} [GroupWithZero G₀] [Group G] [MulDistribMulAction G₀ G] {S T : Subgroup G} {a : G₀} (ha : a 0) :
a S T S a⁻¹ T
theorem Subgroup.le_pointwise_smul_iff₀ {G₀ : Type u_1} {G : Type u_2} [GroupWithZero G₀] [Group G] [MulDistribMulAction G₀ G] {S T : Subgroup G} {a : G₀} (ha : a 0) :
S a T a⁻¹ S T

The action on an additive subgroup corresponding to applying the action to every element.

This is available as an instance in the Pointwise locale.

Equations
Instances For
    theorem AddSubgroup.pointwise_smul_def {M : Type u_3} {A : Type u_4} [Monoid M] [AddGroup A] [DistribMulAction M A] {a : M} (S : AddSubgroup A) :
    @[simp]
    theorem AddSubgroup.coe_pointwise_smul {M : Type u_3} {A : Type u_4} [Monoid M] [AddGroup A] [DistribMulAction M A] (a : M) (S : AddSubgroup A) :
    ↑(a S) = a S
    @[simp]
    theorem AddSubgroup.smul_mem_pointwise_smul {M : Type u_3} {A : Type u_4} [Monoid M] [AddGroup A] [DistribMulAction M A] (m : A) (a : M) (S : AddSubgroup A) :
    m Sa m a S
    theorem AddSubgroup.mem_smul_pointwise_iff_exists {M : Type u_3} {A : Type u_4} [Monoid M] [AddGroup A] [DistribMulAction M A] (m : A) (a : M) (S : AddSubgroup A) :
    m a S sS, a s = m
    @[simp]
    theorem AddSubgroup.smul_mem_pointwise_smul_iff {G : Type u_2} {A : Type u_4} [Group G] [AddGroup A] [DistribMulAction G A] {S : AddSubgroup A} {a : G} {x : A} :
    a x a S x S
    theorem AddSubgroup.mem_pointwise_smul_iff_inv_smul_mem {G : Type u_2} {A : Type u_4} [Group G] [AddGroup A] [DistribMulAction G A] {S : AddSubgroup A} {a : G} {x : A} :
    x a S a⁻¹ x S
    theorem AddSubgroup.mem_inv_pointwise_smul_iff {G : Type u_2} {A : Type u_4} [Group G] [AddGroup A] [DistribMulAction G A] {S : AddSubgroup A} {a : G} {x : A} :
    x a⁻¹ S a x S
    @[simp]
    theorem AddSubgroup.pointwise_smul_le_pointwise_smul_iff {G : Type u_2} {A : Type u_4} [Group G] [AddGroup A] [DistribMulAction G A] {S T : AddSubgroup A} {a : G} :
    a S a T S T
    theorem AddSubgroup.pointwise_smul_le_iff {G : Type u_2} {A : Type u_4} [Group G] [AddGroup A] [DistribMulAction G A] {S T : AddSubgroup A} {a : G} :
    a S T S a⁻¹ T
    theorem AddSubgroup.le_pointwise_smul_iff {G : Type u_2} {A : Type u_4} [Group G] [AddGroup A] [DistribMulAction G A] {S T : AddSubgroup A} {a : G} :
    S a T a⁻¹ S T
    @[simp]
    theorem AddSubgroup.smul_mem_pointwise_smul_iff₀ {G₀ : Type u_1} {A : Type u_4} [GroupWithZero G₀] [AddGroup A] [DistribMulAction G₀ A] {a : G₀} (ha : a 0) (S : AddSubgroup A) (x : A) :
    a x a S x S
    theorem AddSubgroup.mem_pointwise_smul_iff_inv_smul_mem₀ {G₀ : Type u_1} {A : Type u_4} [GroupWithZero G₀] [AddGroup A] [DistribMulAction G₀ A] {a : G₀} (ha : a 0) (S : AddSubgroup A) (x : A) :
    x a S a⁻¹ x S
    theorem AddSubgroup.mem_inv_pointwise_smul_iff₀ {G₀ : Type u_1} {A : Type u_4} [GroupWithZero G₀] [AddGroup A] [DistribMulAction G₀ A] {a : G₀} (ha : a 0) (S : AddSubgroup A) (x : A) :
    x a⁻¹ S a x S
    @[simp]
    theorem AddSubgroup.pointwise_smul_le_pointwise_smul_iff₀ {G₀ : Type u_1} {A : Type u_4} [GroupWithZero G₀] [AddGroup A] [DistribMulAction G₀ A] {S T : AddSubgroup A} {a : G₀} (ha : a 0) :
    a S a T S T
    theorem AddSubgroup.pointwise_smul_le_iff₀ {G₀ : Type u_1} {A : Type u_4} [GroupWithZero G₀] [AddGroup A] [DistribMulAction G₀ A] {S T : AddSubgroup A} {a : G₀} (ha : a 0) :
    a S T S a⁻¹ T
    theorem AddSubgroup.le_pointwise_smul_iff₀ {G₀ : Type u_1} {A : Type u_4} [GroupWithZero G₀] [AddGroup A] [DistribMulAction G₀ A] {S T : AddSubgroup A} {a : G₀} (ha : a 0) :
    S a T a⁻¹ S T