Subgroups in a group with zero #
@[simp]
theorem
Subgroup.smul_mem_pointwise_smul_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{a : G₀}
(ha : a ≠ 0)
(S : Subgroup G)
(x : G)
:
theorem
Subgroup.mem_pointwise_smul_iff_inv_smul_mem₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{a : G₀}
(ha : a ≠ 0)
(S : Subgroup G)
(x : G)
:
theorem
Subgroup.mem_inv_pointwise_smul_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{a : G₀}
(ha : a ≠ 0)
(S : Subgroup G)
(x : G)
:
@[simp]
theorem
Subgroup.pointwise_smul_le_pointwise_smul_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{S T : Subgroup G}
{a : G₀}
(ha : a ≠ 0)
:
theorem
Subgroup.pointwise_smul_le_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{S T : Subgroup G}
{a : G₀}
(ha : a ≠ 0)
:
theorem
Subgroup.le_pointwise_smul_iff₀
{G₀ : Type u_1}
{G : Type u_2}
[GroupWithZero G₀]
[Group G]
[MulDistribMulAction G₀ G]
{S T : Subgroup G}
{a : G₀}
(ha : a ≠ 0)
:
def
AddSubgroup.pointwiseMulAction
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
:
MulAction M (AddSubgroup A)
The action on an additive subgroup corresponding to applying the action to every element.
This is available as an instance in the Pointwise
locale.
Equations
- AddSubgroup.pointwiseMulAction = { smul := fun (a : M) (S : AddSubgroup A) => AddSubgroup.map ((DistribMulAction.toAddMonoidEnd M A) a) S, one_smul := ⋯, mul_smul := ⋯ }
Instances For
theorem
AddSubgroup.pointwise_smul_def
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
{a : M}
(S : AddSubgroup A)
:
@[simp]
theorem
AddSubgroup.coe_pointwise_smul
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
(a : M)
(S : AddSubgroup A)
:
@[simp]
theorem
AddSubgroup.pointwise_smul_toAddSubmonoid
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
(a : M)
(S : AddSubgroup A)
:
theorem
AddSubgroup.smul_mem_pointwise_smul
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
(m : A)
(a : M)
(S : AddSubgroup A)
:
theorem
AddSubgroup.mem_smul_pointwise_iff_exists
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
(m : A)
(a : M)
(S : AddSubgroup A)
:
instance
AddSubgroup.pointwise_isCentralScalar
{M : Type u_3}
{A : Type u_4}
[Monoid M]
[AddGroup A]
[DistribMulAction M A]
[DistribMulAction Mᵐᵒᵖ A]
[IsCentralScalar M A]
:
IsCentralScalar M (AddSubgroup A)
@[simp]
theorem
AddSubgroup.smul_mem_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S : AddSubgroup A}
{a : G}
{x : A}
:
theorem
AddSubgroup.mem_pointwise_smul_iff_inv_smul_mem
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S : AddSubgroup A}
{a : G}
{x : A}
:
theorem
AddSubgroup.mem_inv_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S : AddSubgroup A}
{a : G}
{x : A}
:
@[simp]
theorem
AddSubgroup.pointwise_smul_le_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S T : AddSubgroup A}
{a : G}
:
theorem
AddSubgroup.pointwise_smul_le_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S T : AddSubgroup A}
{a : G}
:
theorem
AddSubgroup.le_pointwise_smul_iff
{G : Type u_2}
{A : Type u_4}
[Group G]
[AddGroup A]
[DistribMulAction G A]
{S T : AddSubgroup A}
{a : G}
:
@[simp]
theorem
AddSubgroup.smul_mem_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{a : G₀}
(ha : a ≠ 0)
(S : AddSubgroup A)
(x : A)
:
theorem
AddSubgroup.mem_pointwise_smul_iff_inv_smul_mem₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{a : G₀}
(ha : a ≠ 0)
(S : AddSubgroup A)
(x : A)
:
theorem
AddSubgroup.mem_inv_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{a : G₀}
(ha : a ≠ 0)
(S : AddSubgroup A)
(x : A)
:
@[simp]
theorem
AddSubgroup.pointwise_smul_le_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{S T : AddSubgroup A}
{a : G₀}
(ha : a ≠ 0)
:
theorem
AddSubgroup.pointwise_smul_le_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{S T : AddSubgroup A}
{a : G₀}
(ha : a ≠ 0)
:
theorem
AddSubgroup.le_pointwise_smul_iff₀
{G₀ : Type u_1}
{A : Type u_4}
[GroupWithZero G₀]
[AddGroup A]
[DistribMulAction G₀ A]
{S T : AddSubgroup A}
{a : G₀}
(ha : a ≠ 0)
: