Corollaries From Approximation Lemmas (Algebra.ContinuedFractions.Computation.Approximations
) #
Summary #
Using the equivalence of the convergents computations
(GenContFract.convs
and GenContFract.convs'
) for
continued fractions (see Algebra.ContinuedFractions.ConvergentsEquiv
), it follows that the
convergents computations for GenContFract.of
are equivalent.
Moreover, we show the convergence of the continued fractions computations, that is
(GenContFract.of v).convs
indeed computes v
in the limit.
Main Definitions #
ContFract.of
returns the (regular) continued fraction of a value.
Main Theorems #
GenContFract.of_convs_eq_convs'
shows that the convergents computations forGenContFract.of
are equivalent.GenContFract.of_convergence
shows that(GenContFract.of v).convs
converges tov
.
Tags #
convergence, fractions
theorem
GenContFract.of_convs_eq_convs'
{K : Type u_1}
(v : K)
[LinearOrderedField K]
[FloorRing K]
:
(GenContFract.of v).convs = (GenContFract.of v).convs'
theorem
GenContFract.convs_succ
{K : Type u_1}
(v : K)
[LinearOrderedField K]
[FloorRing K]
(n : ℕ)
:
(GenContFract.of v).convs (n + 1) = ↑⌊v⌋ + 1 / (GenContFract.of (Int.fract v)⁻¹).convs n
The recurrence relation for the convergents of the continued fraction expansion
of an element v
of K
in terms of the convergents of the inverse of its fractional part.
Convergence #
We next show that (GenContFract.of v).convs v
converges to v
.
theorem
GenContFract.of_convergence_epsilon
{K : Type u_1}
(v : K)
[LinearOrderedField K]
[FloorRing K]
[Archimedean K]
(ε : K)
:
ε > 0 → ∃ (N : ℕ), ∀ n ≥ N, |v - (GenContFract.of v).convs n| < ε
theorem
GenContFract.of_convergence
{K : Type u_1}
(v : K)
[LinearOrderedField K]
[FloorRing K]
[Archimedean K]
[TopologicalSpace K]
[OrderTopology K]
:
Filter.Tendsto (GenContFract.of v).convs Filter.atTop (nhds v)