Documentation

FLT.Mathlib.Topology.Algebra.ContinuousMonoidHom

Equations
Instances For
    def ContinuousAddEquiv.quotientPi {ι : Type u_1} {G : ιType u_2} [(i : ι) → AddCommGroup (G i)] [(i : ι) → TopologicalSpace (G i)] [∀ (i : ι), IsTopologicalAddGroup (G i)] [Fintype ι] (p : (i : ι) → AddSubgroup (G i)) [DecidableEq ι] :
    ((i : ι) → G i) AddSubgroup.pi Set.univ p ≃ₜ+ ((i : ι) → G i p i)
    Equations
    Instances For
      def ContinuousMulEquiv.piUnique {ι : Type u_1} (M : ιType u_2) [(j : ι) → Mul (M j)] [(j : ι) → TopologicalSpace (M j)] [Unique ι] :
      ((j : ι) → M j) ≃ₜ* M default

      A family indexed by a type with a unique element is ContinuousMulEquiv to the element at the single index.

      Equations
      Instances For
        def ContinuousAddEquiv.piUnique {ι : Type u_1} (M : ιType u_2) [(j : ι) → Add (M j)] [(j : ι) → TopologicalSpace (M j)] [Unique ι] :
        ((j : ι) → M j) ≃ₜ+ M default

        A family indexed by a type with a unique element is ContinuousAddEquiv to the element at the single index.

        Equations
        Instances For
          def ContinuousMulEquiv.piEquivPiSubtypeProd {ι : Type u_1} (p : ιProp) (Y : ιType u_2) [(i : ι) → TopologicalSpace (Y i)] [(i : ι) → Mul (Y i)] [DecidablePred p] :
          ((i : ι) → Y i) ≃ₜ* ((i : { x : ι // p x }) → Y i) × ((i : { x : ι // ¬p x }) → Y i)

          Splits the indices of ∀ (i : ι), Y i along the predicate p. This is Equiv.piEquivPiSubtypeProd as a ContinuousMulEquiv.

          Equations
          Instances For
            def ContinuousAddEquiv.piEquivPiSubtypeProd {ι : Type u_1} (p : ιProp) (Y : ιType u_2) [(i : ι) → TopologicalSpace (Y i)] [(i : ι) → Add (Y i)] [DecidablePred p] :
            ((i : ι) → Y i) ≃ₜ+ ((i : { x : ι // p x }) → Y i) × ((i : { x : ι // ¬p x }) → Y i)

            Splits the indices of ∀ (i : ι), Y i along the predicate p. This is Equiv.piEquivPiSubtypeProd as a ContinuousAddEquiv.

            Equations
            Instances For