Documentation

FLT.Deformations.RepresentationTheory.GaloisRep

def GaloisRep (K : Type uK) [Field K] (A : Type u_2) [CommRing A] [TopologicalSpace A] (M : Type u_4) [AddCommGroup M] [Module A M] :
Type (max uK u_4)

GaloisRep K A M are the A-linear galois reps of a field K on the A-module M.

Equations
Instances For
    theorem GaloisRep.ext {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] {ρ ρ' : GaloisRep K A M} (H : ∀ (σ : Field.absoluteGaloisGroup K), ρ σ = ρ' σ) :
    ρ = ρ'
    theorem GaloisRep.ext_iff {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] {ρ ρ' : GaloisRep K A M} :
    ρ = ρ' ∀ (σ : Field.absoluteGaloisGroup K), ρ σ = ρ' σ
    @[reducible, inline]
    abbrev GaloisRep.ker {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] (ρ : GaloisRep K A M) :

    The kernel of a galois rep.

    Equations
    Instances For
      noncomputable def GaloisRep.map {K : Type uK} {L : Type u_1} [Field K] [Field L] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] [NumberField K] (ρ : GaloisRep K A M) (f : K →+* L) :
      GaloisRep L A M

      A field extension induces a map between galois reps. Note that this relies on an arbitrarily chosen embedding of the algebraic closures.

      Equations
      Instances For
        @[simp]
        theorem GaloisRep.ker_map {K : Type uK} {L : Type u_1} [Field K] [Field L] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] [NumberField K] (ρ : GaloisRep K A M) (f : K →+* L) :
        @[reducible, inline]
        abbrev FramedGaloisRep (K : Type uK) [Field K] (A : Type u_2) [CommRing A] [TopologicalSpace A] (n : Type u_6) :
        Type (max uK u_2 u_6)

        A framed galois rep is a galois rep with a distinguished basis. We implement it by via a galois rep on Aⁿ.

        Equations
        Instances For
          @[reducible, inline]
          noncomputable abbrev FramedGaloisRep.map {K : Type uK} {L : Type u_1} [Field K] [Field L] {A : Type u_2} [CommRing A] [TopologicalSpace A] {n : Type u_6} [NumberField K] (ρ : FramedGaloisRep K A n) (f : K →+* L) :

          A field extension induces a map between framed galois reps. Note that this relies on an arbitrarily chosen embedding of the algebraic closures.

          Equations
          Instances For
            noncomputable def GaloisRep.conj {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} {N : Type u_5} [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] (ρ : GaloisRep K A M) (e : M ≃ₗ[A] N) :
            GaloisRep K A N

            We can conjugate a galois rep by a linear isomorphism on the space.

            Equations
            Instances For
              theorem GaloisRep.conj_apply {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} {N : Type u_5} [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] (ρ : GaloisRep K A M) (e : M ≃ₗ[A] N) (σ : Field.absoluteGaloisGroup K) :
              (ρ.conj e) σ = e.conj (ρ σ)
              @[simp]
              theorem GaloisRep.conj_apply_apply {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} {N : Type u_5} [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] (ρ : GaloisRep K A M) (e : M ≃ₗ[A] N) (σ : Field.absoluteGaloisGroup K) (x : N) :
              ((ρ.conj e) σ) x = e ((ρ σ) (e.symm x))
              @[simp]
              theorem GaloisRep.map_conj {K : Type uK} {L : Type u_1} [Field K] [Field L] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} {N : Type u_5} [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] [NumberField K] (ρ : GaloisRep K A M) (e : M ≃ₗ[A] N) (f : K →+* L) :
              (ρ.conj e).map f = (ρ.map f).conj e
              @[simp]
              theorem GaloisRep.ker_conj {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} {N : Type u_5} [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] (ρ : GaloisRep K A M) (e : M ≃ₗ[A] N) :
              (ρ.conj e).ker = ρ.ker
              noncomputable def GaloisRep.conjEquiv {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} {N : Type u_5} [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] (e : M ≃ₗ[A] N) :
              GaloisRep K A M GaloisRep K A N

              Equivalent modules have equivalent set of galois reps.

              Equations
              Instances For
                noncomputable def GaloisRep.frame {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] {n : Type u_6} [Fintype n] (ρ : GaloisRep K A M) (b : Module.Basis n A M) :

                Given a basis, we may frame a galois rep into a framed galois rep.

                Equations
                Instances For
                  noncomputable def FramedGaloisRep.unframe {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] {n : Type u_6} [Fintype n] (ρ : FramedGaloisRep K A n) (b : Module.Basis n A M) :
                  GaloisRep K A M

                  Given a basis of M, we may realize a framed galois rep as a galois rep on M.

                  Equations
                  Instances For
                    @[simp]
                    theorem GaloisRep.unframe_frame {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] {n : Type u_6} [Fintype n] (ρ : GaloisRep K A M) (b : Module.Basis n A M) :
                    (ρ.frame b).unframe b = ρ
                    @[simp]
                    theorem FramedGaloisRep.unframe_frame {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] {n : Type u_6} [Fintype n] (ρ : FramedGaloisRep K A n) (b : Module.Basis n A M) :
                    (ρ.unframe b).frame b = ρ
                    noncomputable def FramedGaloisRep.GL {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {n : Type u_6} [Fintype n] [DecidableEq n] [IsTopologicalRing A] :

                    A-linear framed galois reps are equivalent to continuous homomorphisms into GLₙ(A).

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For
                      @[simp]
                      theorem FramedGaloisRep.GL_apply {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {n : Type u_6} [Fintype n] [DecidableEq n] [IsTopologicalRing A] (ρ : FramedGaloisRep K A n) (σ : Field.absoluteGaloisGroup K) :
                      ((«GL» ρ) σ) = LinearMap.toMatrix' (ρ σ)
                      @[reducible, inline]
                      noncomputable abbrev FramedGaloisRep.ofGL {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {n : Type u_6} [Fintype n] [DecidableEq n] [IsTopologicalRing A] :

                      Make an A-linear framed galois reps from a continuous hom into GLₙ(A).

                      Equations
                      Instances For

                        1-dimensional framed galois reps are equivalent to (continuous) characters.

                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For
                          noncomputable def GaloisRep.det {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] [IsTopologicalRing A] (ρ : GaloisRep K A M) :

                          The determinant of a galois rep.

                          Equations
                          Instances For
                            noncomputable def GaloisRep.baseChange {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] (B : Type u_3) [CommRing B] [TopologicalSpace B] {M : Type u_4} [AddCommGroup M] [Module A M] [IsTopologicalRing B] [Algebra A B] [ContinuousSMul A B] [Module.Finite A M] [Module.Free A M] (ρ : GaloisRep K A M) :

                            Make a A-linear galois rep on M into a B-linear rep on B ⊗ M.

                            Equations
                            Instances For
                              @[simp]
                              theorem GaloisRep.baseChange_tmul {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {B : Type u_3} [CommRing B] [TopologicalSpace B] {M : Type u_4} [AddCommGroup M] [Module A M] [IsTopologicalRing B] [Algebra A B] [ContinuousSMul A B] [Module.Finite A M] [Module.Free A M] (ρ : GaloisRep K A M) (σ : Field.absoluteGaloisGroup K) (r : B) (x : M) :
                              ((baseChange B ρ) σ) (r ⊗ₜ[A] x) = r ⊗ₜ[A] (ρ σ) x
                              theorem GaloisRep.ker_baseChange {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {B : Type u_3} [CommRing B] [TopologicalSpace B] {M : Type u_4} [AddCommGroup M] [Module A M] [IsTopologicalRing B] [Algebra A B] [ContinuousSMul A B] [Module.Finite A M] [Module.Free A M] (ρ : GaloisRep K A M) :
                              ρ.ker (baseChange B ρ).ker
                              theorem GaloisRep.baseChange_map {K : Type uK} {L : Type u_1} [Field K] [Field L] {A : Type u_2} [CommRing A] [TopologicalSpace A] {B : Type u_3} [CommRing B] [TopologicalSpace B] {M : Type u_4} [AddCommGroup M] [Module A M] [NumberField K] [IsTopologicalRing B] [Algebra A B] [ContinuousSMul A B] [Module.Finite A M] [Module.Free A M] (ρ : GaloisRep K A M) (f : K →+* L) :
                              (baseChange B ρ).map f = baseChange B (ρ.map f)
                              noncomputable def FramedGaloisRep.baseChange {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {B : Type u_3} [CommRing B] [TopologicalSpace B] {n : Type u_6} [Fintype n] [DecidableEq n] [IsTopologicalRing A] [IsTopologicalRing B] (ρ : FramedGaloisRep K A n) (f : A →+* B) (hf : Continuous f) :

                              Make a framed n dimensional A-linear galois rep into a B-linear rep by composing with GLₙ(A) → GLₙ(B).

                              Equations
                              Instances For
                                @[simp]
                                theorem FramedGaloisRep.baseChange_GL {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {B : Type u_3} [CommRing B] [TopologicalSpace B] {n : Type u_6} [Fintype n] [DecidableEq n] [IsTopologicalRing A] [IsTopologicalRing B] (ρ : FramedGaloisRep K A n) (f : A →+* B) (hf : Continuous f) {σ : Field.absoluteGaloisGroup K} {i j : n} :
                                ((«GL» (ρ.baseChange f hf)) σ) i j = f (((«GL» ρ) σ) i j)
                                theorem GaloisRep.frame_baseChange {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] (B : Type u_3) [CommRing B] [TopologicalSpace B] {M : Type u_4} [AddCommGroup M] [Module A M] {n : Type u_6} [Fintype n] [DecidableEq n] [IsTopologicalRing A] [IsTopologicalRing B] [Algebra A B] [ContinuousSMul A B] [Module.Finite A M] [Module.Free A M] (ρ : GaloisRep K A M) (b : Module.Basis n A M) :
                                theorem FramedGaloisRep.baseChange_map {K : Type uK} {L : Type u_1} [Field K] [Field L] {A : Type u_2} [CommRing A] [TopologicalSpace A] {B : Type u_3} [CommRing B] [TopologicalSpace B] {n : Type u_6} [Fintype n] [DecidableEq n] [NumberField K] [IsTopologicalRing A] [IsTopologicalRing B] (ρ : FramedGaloisRep K A n) (f : A →+* B) (hf : Continuous f) (g : K →+* L) :
                                (ρ.baseChange f hf).map g = (ρ.map g).baseChange f hf
                                theorem Matrix.map_det {F : Type u_7} {α : Type u_8} {β : Type u_9} {n : Type u_10} [CommRing β] [CommRing α] [Fintype n] [DecidableEq n] (M : Matrix n n α) (f : F) [FunLike F α β] [RingHomClass F α β] :
                                (M.map f).det = f M.det
                                theorem LinearMap.trace_toLin' {R : Type u_7} {n : Type u_8} [CommSemiring R] [DecidableEq n] [Fintype n] (M : Matrix n n R) :
                                (trace R (nR)) (Matrix.toLin' M) = M.trace
                                theorem FramedGaloisRep.det_baseChange {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {B : Type u_3} [CommRing B] [TopologicalSpace B] {n : Type u_6} [Fintype n] [DecidableEq n] [IsTopologicalRing A] [IsTopologicalRing B] (ρ : FramedGaloisRep K A n) (f : A →+* B) (hf : Continuous f) :
                                GaloisRep.det (ρ.baseChange f hf) = { toMonoidHom := f, continuous_toFun := hf }.comp (GaloisRep.det ρ)
                                @[reducible, inline]

                                Given a (global) galois rep, this is the local galois rep at a finite prime v. Note: this fixes an arbitrary embedding Kᵃˡᵍ → Kᵥᵃˡᵍ, or equivalently, an arbitrary choice of valuation on Kᵃˡᵍ extending v.

                                Equations
                                Instances For

                                  The class of galois reps unramified at v.

                                  Instances
                                    instance instIsUnramifiedAtConj {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} {N : Type u_5} [AddCommGroup M] [Module A M] [AddCommGroup N] [Module A N] [NumberField K] (ρ : GaloisRep K A M) (v : IsDedekindDomain.HeightOneSpectrum (NumberField.RingOfIntegers K)) [ρ.IsUnramifiedAt v] (e : M ≃ₗ[A] N) :

                                    The characteristic polynomial of the frobenious conjugacy class at v under ρ.

                                    Equations
                                    Instances For
                                      def GaloisRep.Space {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] (ρ : GaloisRep K A M) :
                                      Type u_4

                                      The underlying space of a galois rep. This is a type class synonym that allows G to act on it via ρ.

                                      Equations
                                      Instances For
                                        instance instAddCommGroupSpace {K : Type uK} [Field K] {A : Type u_2} [CommRing A] [TopologicalSpace A] {M : Type u_4} [AddCommGroup M] [Module A M] (ρ : GaloisRep K A M) :
                                        Equations
                                        Equations

                                        A galois rep ρ : Γ K → Aut_A(M) has a flat prolongation at v if M (when viewed as a Γ Kᵥ) module is isomorphic to the geometric points of a finite etale hopf algebra over Kᵥ, and there exists an finite flat hopf algebra over 𝒪ᵥ whose generic fiber is isomorphic to it. In particular this requires M (and by extension A) to have finite cardinality.

                                        Note that the Algebra.Etale Kᵥ (Kᵥ ⊗[𝒪ᵥ] G) condition is redundant because Kᵥ has char 0 and all finite flat group schemes over Kᵥ are etale. But this would be hard to prove in general, while in the applications they would come from finite groups so it would be easy to show that they are etale. If this turns out to not be the case, we can remove this condition and state the aformentioned result as a sorry.

                                        Equations
                                        • One or more equations did not get rendered due to their size.
                                        Instances For

                                          A galois rep ρ : Γ K → Aut_A(M) is flat at v if A/I ⊗ M has a flat prolongation at v for all open ideals I.

                                          Instances

                                            A Galois representation is a representation (note that we are forgetting topological information here).

                                            Equations
                                            Instances For
                                              def GaloisRep.IsIrreducible {K : Type uK} [Field K] {M : Type u_4} [AddCommGroup M] {k : Type u_7} [Field k] [TopologicalSpace k] [Module k M] (ρ : GaloisRep K k M) :

                                              Irreducibility of a Galois representation over a field.

                                              Equations
                                              Instances For