Documentation

FLT.DedekindDomain.AdicValuation

Adic Completions #

If A is a valued ring with field of fractions K there are two different complete rings containing A one might define, the first is 𝒪_v = {x ∈ K_v | v x ≤ 1} and the second is the v-adic completion of A. In the case when A is a Dedekind domain these definitions give isomorphic topological A-algebras. This file makes some progress towards this.

Main theorems #

theorem IsDedekindDomain.exists_ofAdd_natCast_of_le_one {x : WithZero (Multiplicative )} (hx : x 0) (hx' : x 1) :
∃ (k : ), (Multiplicative.ofAdd (-k)) = x
theorem IsDedekindDomain.exists_adicValued_mul_sub_le {A : Type u_1} [CommRing A] [IsDedekindDomain A] (v : HeightOneSpectrum A) {a b : A} {γ : WithZero (Multiplicative )} ( : γ 0) (hle : γ v.intValuation a) (hle' : v.intValuation b v.intValuation a) :
∃ (y : A), v.intValuation (y * a - b) γ

Given a, b ∈ A and v b ≤ v a we can find y in A such that y is close to a / b by the valuation v.

An element of 𝒪_v can be approximated by an element of A.

theorem IsDedekindDomain.exists_forall_adicValued_sub_lt {A : Type u_1} (K : Type u_2) [CommRing A] [Field K] [Algebra A K] [IsFractionRing A K] [IsDedekindDomain A] {ι : Type u_3} (s : Finset ι) (e : ι(WithZero (Multiplicative ))ˣ) (valuation : ιHeightOneSpectrum A) (injective : Function.Injective valuation) (x : (i : ι) → (HeightOneSpectrum.adicCompletionIntegers K (valuation i))) :
∃ (a : A), is, Valued.v (((algebraMap A K) a) - (x i)) < (e i)

An element of ∏_{v ∈ s} 𝒪_v, with s finite, can be approximated by an element of A.

theorem IsDedekindDomain.closureAlgebraMapIntegers_eq_prodIntegers {A : Type u_1} (K : Type u_2) [CommRing A] [Field K] [Algebra A K] [IsFractionRing A K] [IsDedekindDomain A] {ι : Type u_3} (valuation : ιHeightOneSpectrum A) (injective : Function.Injective valuation) :
closure (algebraMap A ((i : ι) → HeightOneSpectrum.adicCompletion K (valuation i))).range = Set.univ.pi fun (i : ι) => (HeightOneSpectrum.adicCompletionIntegers K (valuation i)).carrier

The closure of A in ∏_{v ∈ s} K_v is ∏_{v ∈ s} 𝒪_v. s may be infinite.