Documentation

FLT.DedekindDomain.AdicValuation

Adic Completions #

If A is a valued ring with field of fractions K there are two different complete rings containing A one might define, the first is 𝒪_v = {x ∈ K_v | v x ≤ 1} (defined in Lean as adicCompletionIntegers K v) and the second is the v-adic completion of A. In the case when A is a Dedekind domain these definitions give isomorphic topological A-algebras. This file makes some progress towards this.

Main theorems/defs #

theorem IsDedekindDomain.HeightOneSpectrum.exists_adicValued_mul_sub_le {A : Type u_1} [CommRing A] [IsDedekindDomain A] (v : HeightOneSpectrum A) {a b : A} {γ : WithZero (Multiplicative )} ( : γ 0) (hle : γ v.intValuation a) (hle' : v.intValuation b v.intValuation a) :
∃ (y : A), v.intValuation (y * a - b) γ

Given a, b ∈ A and v b ≤ v a we can find y in A such that y is close to a / b by the valuation v.

An element of 𝒪_v can be approximated by an element of A.

@[reducible, inline]

The maximal ideal of the integers of the completion of v.

Equations
Instances For

    The canonical ring homomorphism from A / v to 𝓞ᵥ / v, where 𝓞ᵥ is the integers of the completion Kᵥ of the field of fractions of A.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      The canonical isomorphism from A / v to 𝓞ᵥ / v, where 𝓞ᵥ is the integers of the completion Kᵥ of the field of fractions K of A.

      Equations
      Instances For
        theorem IsDedekindDomain.HeightOneSpectrum.exists_forall_adicValued_sub_lt {A : Type u_1} (K : Type u_2) [CommRing A] [Field K] [Algebra A K] [IsFractionRing A K] [IsDedekindDomain A] {ι : Type u_3} (s : Finset ι) (e : ι(WithZero (Multiplicative ))ˣ) (valuation : ιHeightOneSpectrum A) (injective : Function.Injective valuation) (x : (i : ι) → (adicCompletionIntegers K (valuation i))) :
        ∃ (a : A), is, Valued.v (((algebraMap A K) a) - (x i)) < (e i)

        An element of ∏_{v ∈ s} 𝒪_v, with s finite, can be approximated by an element of A.

        theorem IsDedekindDomain.HeightOneSpectrum.closureAlgebraMapIntegers_eq_prodIntegers {A : Type u_1} (K : Type u_2) [CommRing A] [Field K] [Algebra A K] [IsFractionRing A K] [IsDedekindDomain A] {ι : Type u_3} (valuation : ιHeightOneSpectrum A) (injective : Function.Injective valuation) :
        closure (algebraMap A ((i : ι) → adicCompletion K (valuation i))).range = Set.univ.pi fun (i : ι) => (adicCompletionIntegers K (valuation i)).carrier

        The closure of A in ∏_{v ∈ s} K_v is ∏_{v ∈ s} 𝒪_v. s may be infinite.

        theorem IsDedekindDomain.HeightOneSpectrum.adicCompletion.eq_mul_pi_adicCompletionIntegers {A : Type u_1} (K : Type u_2) [CommRing A] [Field K] [Algebra A K] [IsFractionRing A K] [IsDedekindDomain A] {ι : Type u_3} [Fintype ι] (valuation : ιHeightOneSpectrum A) (x : (i : ι) → adicCompletion K (valuation i)) :
        ∃ (k : K), ySet.univ.pi fun (i : ι) => (adicCompletionIntegers K (valuation i)).carrier, x = k y
        theorem IsDedekindDomain.HeightOneSpectrum.denseRange_of_prodAlgebraMap {A : Type u_1} (K : Type u_2) [CommRing A] [Field K] [Algebra A K] [IsFractionRing A K] [IsDedekindDomain A] {ι : Type u_3} [Fintype ι] {valuation : ιHeightOneSpectrum A} (injective : Function.Injective valuation) :
        DenseRange (algebraMap K ((i : ι) → adicCompletion K (valuation i)))

        If s is finite then K in dense in ∏_{v ∈ s} K_v.

        theorem IsDedekindDomain.HeightOneSpectrum.adicCompletion.eq_pow_uniformizer_mul_unit {A : Type u_1} (K : Type u_2) [CommRing A] [Field K] [Algebra A K] [IsFractionRing A K] [IsDedekindDomain A] (v : HeightOneSpectrum A) {x : (adicCompletionIntegers K v)} (hx : x 0) {π : (adicCompletionIntegers K v)} ( : Valued.v π = (Multiplicative.ofAdd (-1))) :
        ∃ (n : ) (u : (↥(adicCompletionIntegers K v))ˣ), x = π ^ n * u