@[reducible, inline]
noncomputable abbrev
TotallyDefiniteQuaternionAlgebra.Dfx
(F : Type u_1)
[Field F]
[NumberField F]
(D : Type u_2)
[Ring D]
[Algebra F D]
:
Type (max u_1 u_2)
Equations
Instances For
@[reducible, inline]
noncomputable abbrev
TotallyDefiniteQuaternionAlgebra.incl₁
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
:
Equations
Instances For
@[reducible, inline]
noncomputable abbrev
TotallyDefiniteQuaternionAlgebra.incl₂
(F : Type u_1)
[Field F]
[NumberField F]
(D : Type u_2)
[Ring D]
[Algebra F D]
:
Equations
- TotallyDefiniteQuaternionAlgebra.incl₂ F D = Units.map ↑Algebra.toRingHom
Instances For
This definition is made in mathlib-generality but is not the definition of an automorphic
form unless Dˣ is compact mod centre at infinity. This hypothesis will be true if D
is a
totally definite quaternion algebra.
structure
TotallyDefiniteQuaternionAlgebra.AutomorphicForm
(F : Type u_1)
[Field F]
[NumberField F]
(D : Type u_2)
[Ring D]
[Algebra F D]
(R : Type u_3)
[CommRing R]
(W : Type u_4)
[AddCommGroup W]
[Module R W]
[MulAction Dˣ W]
(U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
(χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R)
:
Type (max (max u_1 u_2) u_4)
- toFun : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ → W
- left_invt : ∀ (δ : Dˣ) (g : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ), ↑self (TotallyDefiniteQuaternionAlgebra.incl₁ δ * g) = δ • ↑self g
- has_character : ∀ (g : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ) (z : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ), ↑self (g * (TotallyDefiniteQuaternionAlgebra.incl₂ F D) z) = χ z • ↑self g
- right_invt : ∀ (g u : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ), u ∈ U → ↑self (g * u) = ↑self g
Instances For
theorem
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.left_invt
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[MulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
(self : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
(δ : Dˣ)
(g : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
:
theorem
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.has_character
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[MulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
(self : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
(g : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
(z : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ)
:
↑self (g * (TotallyDefiniteQuaternionAlgebra.incl₂ F D) z) = χ z • ↑self g
theorem
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.right_invt
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[MulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
(self : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
(g : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
(u : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
:
noncomputable instance
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instCoeFunForallDfx
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
:
CoeFun (TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
fun (x : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ) => TotallyDefiniteQuaternionAlgebra.Dfx F D → W
Equations
- TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instCoeFunForallDfx = { coe := TotallyDefiniteQuaternionAlgebra.AutomorphicForm.toFun }
theorem
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.ext
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
(φ : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
(ψ : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
(h : ∀ (x : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ), ↑φ x = ↑ψ x)
:
φ = ψ
noncomputable def
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.zero
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
:
TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ
Equations
- TotallyDefiniteQuaternionAlgebra.AutomorphicForm.zero = { toFun := 0, left_invt := ⋯, has_character := ⋯, right_invt := ⋯ }
Instances For
noncomputable instance
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instZero
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
:
Zero (TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
Equations
- TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instZero = { zero := TotallyDefiniteQuaternionAlgebra.AutomorphicForm.zero }
@[simp]
theorem
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.zero_apply
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
(x : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
:
↑0 x = 0
noncomputable def
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.neg
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
(φ : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
:
TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ
Equations
- φ.neg = { toFun := fun (x : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ) => -↑φ x, left_invt := ⋯, has_character := ⋯, right_invt := ⋯ }
Instances For
noncomputable instance
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instNeg
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
:
Neg (TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
Equations
- TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instNeg = { neg := TotallyDefiniteQuaternionAlgebra.AutomorphicForm.neg }
@[simp]
theorem
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.neg_apply
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
(φ : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
(x : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
:
noncomputable instance
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instAdd
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
:
Add (TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
Equations
- TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instAdd = { add := TotallyDefiniteQuaternionAlgebra.AutomorphicForm.add }
@[simp]
theorem
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.add_apply
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
(φ : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
(ψ : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
(x : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
:
noncomputable instance
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.addCommGroup
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
:
AddCommGroup (TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
Equations
- TotallyDefiniteQuaternionAlgebra.AutomorphicForm.addCommGroup = AddCommGroup.mk ⋯
noncomputable def
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.smul
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
[SMulCommClass R Dˣ W]
(r : R)
(φ : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
:
TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ
Equations
- One or more equations did not get rendered due to their size.
Instances For
noncomputable instance
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instSMul
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
[SMulCommClass R Dˣ W]
:
SMul R (TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
Equations
- TotallyDefiniteQuaternionAlgebra.AutomorphicForm.instSMul = { smul := TotallyDefiniteQuaternionAlgebra.AutomorphicForm.smul }
theorem
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.smul_apply
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
[SMulCommClass R Dˣ W]
(r : R)
(φ : TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
(g : (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
:
noncomputable instance
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.module
{F : Type u_1}
[Field F]
[NumberField F]
{D : Type u_2}
[Ring D]
[Algebra F D]
{R : Type u_3}
[CommRing R]
{W : Type u_4}
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
{U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ}
{χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R}
[SMulCommClass R Dˣ W]
:
Module R (TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)
theorem
TotallyDefiniteQuaternionAlgebra.AutomorphicForm.finiteDimensional
(F : Type u_1)
[Field F]
[NumberField F]
(D : Type u_2)
[Ring D]
[Algebra F D]
(R : Type u_3)
[Field R]
(W : Type u_4)
[AddCommGroup W]
[Module R W]
[DistribMulAction Dˣ W]
[SMulCommClass R Dˣ W]
(U : Subgroup (TensorProduct F D (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F))ˣ)
(χ : (DedekindDomain.FiniteAdeleRing (NumberField.RingOfIntegers F) F)ˣ →* R)
[FiniteDimensional R W]
:
FiniteDimensional R (TotallyDefiniteQuaternionAlgebra.AutomorphicForm F D R W U χ)