Characterization of basic topological properties in terms of ultrafilters #
theorem
mapClusterPt_iff_ultrafilter
{X : Type u}
{α : Type u_1}
{x : X}
[TopologicalSpace X]
{F : Filter α}
{u : α → X}
:
MapClusterPt x F u ↔ ∃ (U : Ultrafilter α), ↑U ≤ F ∧ Filter.Tendsto u (↑U) (nhds x)
x
belongs to the closure of s
if and only if some ultrafilter
supported on s
converges to x
.
theorem
continuousAt_iff_ultrafilter
{X : Type u}
{Y : Type v}
{x : X}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X → Y}
:
ContinuousAt f x ↔ ∀ (g : Ultrafilter X), ↑g ≤ nhds x → Filter.Tendsto f (↑g) (nhds (f x))
theorem
continuous_iff_ultrafilter
{X : Type u}
{Y : Type v}
[TopologicalSpace X]
[TopologicalSpace Y]
{f : X → Y}
:
Continuous f ↔ ∀ (x : X) (g : Ultrafilter X), ↑g ≤ nhds x → Filter.Tendsto f (↑g) (nhds (f x))