Documentation

Mathlib.Topology.Ultrafilter

Characterization of basic topological properties in terms of ultrafilters #

theorem Ultrafilter.clusterPt_iff {X : Type u} {x : X} [TopologicalSpace X] {f : Ultrafilter X} :
ClusterPt x f f nhds x
theorem clusterPt_iff_ultrafilter {X : Type u} {x : X} [TopologicalSpace X] {f : Filter X} :
ClusterPt x f ∃ (u : Ultrafilter X), u f u nhds x
theorem mapClusterPt_iff_ultrafilter {X : Type u} {α : Type u_1} {x : X} [TopologicalSpace X] {F : Filter α} {u : αX} :
MapClusterPt x F u ∃ (U : Ultrafilter α), U F Filter.Tendsto u (↑U) (nhds x)
theorem isOpen_iff_ultrafilter {X : Type u} {s : Set X} [TopologicalSpace X] :
IsOpen s xs, ∀ (l : Ultrafilter X), l nhds xs l
theorem mem_closure_iff_ultrafilter {X : Type u} {x : X} {s : Set X} [TopologicalSpace X] :
x closure s ∃ (u : Ultrafilter X), s u u nhds x

x belongs to the closure of s if and only if some ultrafilter supported on s converges to x.

theorem isClosed_iff_ultrafilter {X : Type u} {s : Set X} [TopologicalSpace X] :
IsClosed s ∀ (x : X) (u : Ultrafilter X), u nhds xs ux s
theorem continuousAt_iff_ultrafilter {X : Type u} {Y : Type v} {x : X} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} :
ContinuousAt f x ∀ (g : Ultrafilter X), g nhds xFilter.Tendsto f (↑g) (nhds (f x))
theorem continuous_iff_ultrafilter {X : Type u} {Y : Type v} [TopologicalSpace X] [TopologicalSpace Y] {f : XY} :
Continuous f ∀ (x : X) (g : Ultrafilter X), g nhds xFilter.Tendsto f (↑g) (nhds (f x))