Clopen upper sets #
In this file we define the type of clopen upper sets.
Compact open sets #
structure
ClopenUpperSet
(α : Type u_2)
[TopologicalSpace α]
[LE α]
extends
TopologicalSpace.Clopens
:
Type u_2
The type of clopen upper sets of a topological space.
- carrier : Set α
- isClopen' : IsClopen self.carrier
- upper' : IsUpperSet self.carrier
Instances For
theorem
ClopenUpperSet.upper'
{α : Type u_2}
[TopologicalSpace α]
[LE α]
(self : ClopenUpperSet α)
:
IsUpperSet self.carrier
instance
ClopenUpperSet.instSetLike
{α : Type u_1}
[TopologicalSpace α]
[LE α]
:
SetLike (ClopenUpperSet α) α
Equations
- ClopenUpperSet.instSetLike = { coe := fun (s : ClopenUpperSet α) => s.carrier, coe_injective' := ⋯ }
def
ClopenUpperSet.Simps.coe
{α : Type u_1}
[TopologicalSpace α]
[LE α]
(s : ClopenUpperSet α)
:
Set α
See Note [custom simps projection].
Equations
Instances For
theorem
ClopenUpperSet.upper
{α : Type u_1}
[TopologicalSpace α]
[LE α]
(s : ClopenUpperSet α)
:
IsUpperSet ↑s
theorem
ClopenUpperSet.isClopen
{α : Type u_1}
[TopologicalSpace α]
[LE α]
(s : ClopenUpperSet α)
:
IsClopen ↑s
def
ClopenUpperSet.toUpperSet
{α : Type u_1}
[TopologicalSpace α]
[LE α]
(s : ClopenUpperSet α)
:
UpperSet α
Reinterpret an upper clopen as an upper set.
Equations
- s.toUpperSet = { carrier := ↑s, upper' := ⋯ }
Instances For
@[simp]
theorem
ClopenUpperSet.toUpperSet_coe
{α : Type u_1}
[TopologicalSpace α]
[LE α]
(s : ClopenUpperSet α)
:
↑s.toUpperSet = ↑s
theorem
ClopenUpperSet.ext
{α : Type u_1}
[TopologicalSpace α]
[LE α]
{s : ClopenUpperSet α}
{t : ClopenUpperSet α}
(h : ↑s = ↑t)
:
s = t
@[simp]
theorem
ClopenUpperSet.coe_mk
{α : Type u_1}
[TopologicalSpace α]
[LE α]
(s : TopologicalSpace.Clopens α)
(h : IsUpperSet s.carrier)
:
↑{ toClopens := s, upper' := h } = ↑s
Equations
- ClopenUpperSet.instSup = { sup := fun (s t : ClopenUpperSet α) => { toClopens := s.toClopens ⊔ t.toClopens, upper' := ⋯ } }
Equations
- ClopenUpperSet.instInf = { inf := fun (s t : ClopenUpperSet α) => { toClopens := s.toClopens ⊓ t.toClopens, upper' := ⋯ } }
Equations
- ClopenUpperSet.instLattice = Function.Injective.lattice SetLike.coe ⋯ ⋯ ⋯
Equations
- ClopenUpperSet.instBoundedOrder = BoundedOrder.lift SetLike.coe ⋯ ⋯ ⋯
@[simp]
theorem
ClopenUpperSet.coe_sup
{α : Type u_1}
[TopologicalSpace α]
[LE α]
(s : ClopenUpperSet α)
(t : ClopenUpperSet α)
:
@[simp]
theorem
ClopenUpperSet.coe_inf
{α : Type u_1}
[TopologicalSpace α]
[LE α]
(s : ClopenUpperSet α)
(t : ClopenUpperSet α)
:
@[simp]