Documentation

Mathlib.Topology.Order.OrderClosedExtr

Local maxima from monotonicity and antitonicity #

In this file we prove a lemma that is useful for the First Derivative Test in calculus, and its dual.

Main statements #

theorem isLocalMax_of_mono_anti {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderClosedTopology α] {β : Type u_2} [Preorder β] {a : α} {b : α} {c : α} (g₀ : a < b) (g₁ : b < c) {f : αβ} (h₀ : MonotoneOn f (Set.Ioc a b)) (h₁ : AntitoneOn f (Set.Ico b c)) :

If f is monotone on (a,b] and antitone on [b,c) then f has a local maximum at b.

theorem isLocalMin_of_anti_mono {α : Type u_1} [TopologicalSpace α] [LinearOrder α] [OrderClosedTopology α] {β : Type u_2} [Preorder β] {a : α} {b : α} {c : α} (g₀ : a < b) (g₁ : b < c) {f : αβ} (h₀ : AntitoneOn f (Set.Ioc a b)) (h₁ : MonotoneOn f (Set.Ico b c)) :

If f is antitone on (a,b] and monotone on [b,c) then f has a local minimum at b.