Documentation

Mathlib.Topology.MetricSpace.HolderNorm

Hölder norm #

This file defines the Hölder (semi-)norm for Hölder functions alongside some basic properties. The r-Hölder norm of a function f : X → Y between two metric spaces is the least non-negative real number C for which f is r-Hölder continuous with constant C, i.e. it is the least C for which WithHolder C r f is true.

Main definitions #

Main results #

Tags #

Hölder norm, Hoelder norm, Holder norm

noncomputable def eHolderNorm {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (r : NNReal) (f : XY) :

The r-Hölder (semi-)norm in ℝ≥0∞ of a function f is the least non-negative real number C for which f is r-Hölder continuous with constant C. This is if no such non-negative real exists.

Equations
Instances For
    noncomputable def nnHolderNorm {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (r : NNReal) (f : XY) :

    The r-Hölder (semi)norm in ℝ≥0.

    Equations
    Instances For
      def MemHolder {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (r : NNReal) (f : XY) :

      A function f is MemHolder r f if it is Hölder continuous. Namely, f has a finite r-Hölder constant. This is equivalent to f having finite Hölder norm. c.f. memHolder_iff.

      Equations
      Instances For
        theorem HolderWith.memHolder {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {f : XY} {C : NNReal} (hf : HolderWith C r f) :
        @[simp]
        theorem eHolderNorm_lt_top {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {f : XY} :
        theorem eHolderNorm_ne_top {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {f : XY} :
        @[simp]
        theorem eHolderNorm_eq_top {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {f : XY} :
        theorem MemHolder.eHolderNorm_lt_top {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {f : XY} :

        Alias of the reverse direction of eHolderNorm_lt_top.

        theorem MemHolder.eHolderNorm_ne_top {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {f : XY} :

        Alias of the reverse direction of eHolderNorm_ne_top.

        theorem coe_nnHolderNorm_le_eHolderNorm {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {f : XY} :
        @[simp]
        theorem eHolderNorm_const (X : Type u_1) {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (r : NNReal) (c : Y) :
        @[simp]
        theorem eHolderNorm_zero (X : Type u_1) {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] [Zero Y] (r : NNReal) :
        @[simp]
        theorem nnHolderNorm_const (X : Type u_1) {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] (r : NNReal) (c : Y) :
        @[simp]
        theorem nnHolderNorm_zero (X : Type u_1) {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] [Zero Y] (r : NNReal) :
        theorem eHolderNorm_of_isEmpty {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {f : XY} [hX : IsEmpty X] :
        theorem HolderWith.eHolderNorm_le {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {f : XY} {C : NNReal} (hf : HolderWith C r f) :
        eHolderNorm r f C
        @[simp]
        theorem memHolder_const {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {c : Y} :

        See also memHolder_const for the version with the spelling fun _ ↦ c.

        @[simp]
        theorem memHolder_const' {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} {c : Y} :
        MemHolder r fun (x : X) => c

        Version of memHolder_const with the spelling fun _ ↦ c for the constant function.

        @[simp]
        theorem memHolder_zero {X : Type u_1} {Y : Type u_2} [PseudoEMetricSpace X] [PseudoEMetricSpace Y] {r : NNReal} [Zero Y] :
        theorem eHolderNorm_eq_zero {X : Type u_1} {Y : Type u_2} [MetricSpace X] [EMetricSpace Y] {r : NNReal} {f : XY} :
        eHolderNorm r f = 0 ∀ (x₁ x₂ : X), f x₁ = f x₂
        theorem MemHolder.holderWith {X : Type u_1} {Y : Type u_2} [MetricSpace X] [EMetricSpace Y] {r : NNReal} {f : XY} (hf : MemHolder r f) :
        theorem memHolder_iff_holderWith {X : Type u_1} {Y : Type u_2} [MetricSpace X] [EMetricSpace Y] {r : NNReal} {f : XY} :
        theorem MemHolder.coe_nnHolderNorm_eq_eHolderNorm {X : Type u_1} {Y : Type u_2} [MetricSpace X] [EMetricSpace Y] {r : NNReal} {f : XY} (hf : MemHolder r f) :
        theorem HolderWith.nnholderNorm_le {X : Type u_1} {Y : Type u_2} [MetricSpace X] [EMetricSpace Y] {C : NNReal} {r : NNReal} {f : XY} (hf : HolderWith C r f) :
        theorem MemHolder.comp {X : Type u_1} {Y : Type u_2} [MetricSpace X] [EMetricSpace Y] {r : NNReal} {s : NNReal} {Z : Type u_3} [MetricSpace Z] {f : ZX} {g : XY} (hf : MemHolder r f) (hg : MemHolder s g) :
        MemHolder (s * r) (g f)
        theorem MemHolder.nnHolderNorm_eq_zero {X : Type u_1} {Y : Type u_2} [MetricSpace X] [EMetricSpace Y] {r : NNReal} {f : XY} (hf : MemHolder r f) :
        nnHolderNorm r f = 0 ∀ (x₁ x₂ : X), f x₁ = f x₂
        theorem MemHolder.add {X : Type u_1} {Y : Type u_2} [MetricSpace X] [NormedAddCommGroup Y] {r : NNReal} {f : XY} {g : XY} (hf : MemHolder r f) (hg : MemHolder r g) :
        MemHolder r (f + g)
        theorem MemHolder.smul {X : Type u_1} {Y : Type u_2} [MetricSpace X] [NormedAddCommGroup Y] {r : NNReal} {f : XY} {𝕜 : Type u_3} [NormedDivisionRing 𝕜] [Module 𝕜 Y] [BoundedSMul 𝕜 Y] {c : 𝕜} (hf : MemHolder r f) :
        MemHolder r (c f)
        theorem MemHolder.nsmul {X : Type u_1} {Y : Type u_2} [MetricSpace X] [NormedAddCommGroup Y] {r : NNReal} {f : XY} [Module Y] [BoundedSMul Y] (n : ) (hf : MemHolder r f) :
        MemHolder r (n f)
        theorem MemHolder.nnHolderNorm_add_le {X : Type u_1} {Y : Type u_2} [MetricSpace X] [NormedAddCommGroup Y] {r : NNReal} {f : XY} {g : XY} (hf : MemHolder r f) (hg : MemHolder r g) :
        theorem eHolderNorm_add_le {X : Type u_1} {Y : Type u_2} [MetricSpace X] [NormedAddCommGroup Y] {r : NNReal} {f : XY} {g : XY} :
        theorem eHolderNorm_smul {X : Type u_1} {Y : Type u_2} [MetricSpace X] [NormedAddCommGroup Y] {r : NNReal} {f : XY} {α : Type u_3} [NormedDivisionRing α] [Module α Y] [BoundedSMul α Y] (c : α) :
        theorem MemHolder.nnHolderNorm_smul {X : Type u_1} {Y : Type u_2} [MetricSpace X] [NormedAddCommGroup Y] {r : NNReal} {f : XY} {α : Type u_3} [NormedDivisionRing α] [Module α Y] [BoundedSMul α Y] (hf : MemHolder r f) (c : α) :
        theorem eHolderNorm_nsmul {X : Type u_1} {Y : Type u_2} [MetricSpace X] [NormedAddCommGroup Y] {r : NNReal} {f : XY} [Module Y] [BoundedSMul Y] (n : ) :
        theorem MemHolder.nnHolderNorm_nsmul {X : Type u_1} {Y : Type u_2} [MetricSpace X] [NormedAddCommGroup Y] {r : NNReal} {f : XY} [Module Y] [BoundedSMul Y] (n : ) (hf : MemHolder r f) :