Documentation

Mathlib.Topology.Instances.Rat

Topology on the rational numbers #

The structure of a metric space on is introduced in this file, induced from .

theorem Rat.dist_eq (x : ) (y : ) :
dist x y = |x - y|
@[simp]
theorem Rat.dist_cast (x : ) (y : ) :
dist x y = dist x y
@[deprecated Rat.isUniformEmbedding_coe_real]

Alias of Rat.isUniformEmbedding_coe_real.

@[deprecated Rat.isDenseEmbedding_coe_real]

Alias of Rat.isDenseEmbedding_coe_real.

@[deprecated Rat.isEmbedding_coe_real]

Alias of Rat.isEmbedding_coe_real.

@[simp]
theorem Nat.dist_cast_rat (x : ) (y : ) :
dist x y = dist x y
@[deprecated Nat.isUniformEmbedding_coe_rat]

Alias of Nat.isUniformEmbedding_coe_rat.

@[deprecated Nat.isClosedEmbedding_coe_rat]

Alias of Nat.isClosedEmbedding_coe_rat.

@[simp]
theorem Int.dist_cast_rat (x : ) (y : ) :
dist x y = dist x y
@[deprecated Int.isUniformEmbedding_coe_rat]

Alias of Int.isUniformEmbedding_coe_rat.

@[deprecated Int.isClosedEmbedding_coe_rat]

Alias of Int.isClosedEmbedding_coe_rat.