Bundled continuous maps into orders, with order-compatible topology #
We now set up the partial order and lattice structure (given by pointwise min and max) on continuous functions.
instance
ContinuousMap.partialOrder
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[PartialOrder β]
:
PartialOrder C(α, β)
Equations
- ContinuousMap.partialOrder = PartialOrder.lift (fun (f : C(α, β)) => f.toFun) ⋯
theorem
ContinuousMap.le_def
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[PartialOrder β]
{f : C(α, β)}
{g : C(α, β)}
:
theorem
ContinuousMap.lt_def
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[PartialOrder β]
{f : C(α, β)}
{g : C(α, β)}
:
instance
ContinuousMap.sup
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeSup β]
[ContinuousSup β]
:
@[simp]
theorem
ContinuousMap.coe_sup
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeSup β]
[ContinuousSup β]
(f : C(α, β))
(g : C(α, β))
:
@[simp]
theorem
ContinuousMap.sup_apply
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeSup β]
[ContinuousSup β]
(f : C(α, β))
(g : C(α, β))
(a : α)
:
instance
ContinuousMap.semilatticeSup
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeSup β]
[ContinuousSup β]
:
Equations
- ContinuousMap.semilatticeSup = Function.Injective.semilatticeSup (fun (f : C(α, β)) => ⇑f) ⋯ ⋯
theorem
ContinuousMap.sup'_apply
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeSup β]
[ContinuousSup β]
{ι : Type u_4}
{s : Finset ι}
(H : s.Nonempty)
(f : ι → C(α, β))
(a : α)
:
(s.sup' H f) a = s.sup' H fun (i : ι) => (f i) a
@[simp]
theorem
ContinuousMap.coe_sup'
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeSup β]
[ContinuousSup β]
{ι : Type u_4}
{s : Finset ι}
(H : s.Nonempty)
(f : ι → C(α, β))
:
⇑(s.sup' H f) = s.sup' H fun (i : ι) => ⇑(f i)
instance
ContinuousMap.inf
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeInf β]
[ContinuousInf β]
:
@[simp]
theorem
ContinuousMap.coe_inf
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeInf β]
[ContinuousInf β]
(f : C(α, β))
(g : C(α, β))
:
@[simp]
theorem
ContinuousMap.inf_apply
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeInf β]
[ContinuousInf β]
(f : C(α, β))
(g : C(α, β))
(a : α)
:
instance
ContinuousMap.semilatticeInf
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeInf β]
[ContinuousInf β]
:
Equations
- ContinuousMap.semilatticeInf = Function.Injective.semilatticeInf (fun (f : C(α, β)) => ⇑f) ⋯ ⋯
theorem
ContinuousMap.inf'_apply
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeInf β]
[ContinuousInf β]
{ι : Type u_4}
{s : Finset ι}
(H : s.Nonempty)
(f : ι → C(α, β))
(a : α)
:
(s.inf' H f) a = s.inf' H fun (i : ι) => (f i) a
@[simp]
theorem
ContinuousMap.coe_inf'
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[SemilatticeInf β]
[ContinuousInf β]
{ι : Type u_4}
{s : Finset ι}
(H : s.Nonempty)
(f : ι → C(α, β))
:
⇑(s.inf' H f) = s.inf' H fun (i : ι) => ⇑(f i)
instance
ContinuousMap.instLatticeOfTopologicalLattice
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[Lattice β]
[TopologicalLattice β]
:
Equations
- ContinuousMap.instLatticeOfTopologicalLattice = Function.Injective.lattice (fun (f : C(α, β)) => ⇑f) ⋯ ⋯ ⋯
def
ContinuousMap.IccExtend
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder α]
[OrderTopology α]
{a : α}
{b : α}
(h : a ≤ b)
(f : C(↑(Set.Icc a b), β))
:
Extend a continuous function f : C(Set.Icc a b, β)
to a function f : C(α, β)
.
Equations
- ContinuousMap.IccExtend h f = { toFun := Set.IccExtend h ⇑f, continuous_toFun := ⋯ }
Instances For
@[simp]
theorem
ContinuousMap.coe_IccExtend
{α : Type u_1}
{β : Type u_2}
[TopologicalSpace α]
[TopologicalSpace β]
[LinearOrder α]
[OrderTopology α]
{a : α}
{b : α}
(h : a ≤ b)
(f : C(↑(Set.Icc a b), β))
:
⇑(ContinuousMap.IccExtend h f) = Set.IccExtend h ⇑f