Documentation

Mathlib.Topology.Compactification.OnePoint

The OnePoint Compactification #

We construct the OnePoint compactification (the one-point compactification) of an arbitrary topological space X and prove some properties inherited from X.

Main definitions #

Main results #

Tags #

one-point compactification, Alexandroff compactification, compactness

Definition and basic properties #

In this section we define OnePoint X to be the disjoint union of X and , implemented as Option X. Then we restate some lemmas about Option X for OnePoint X.

def OnePoint (X : Type u_3) :
Type u_3

The OnePoint extension of an arbitrary topological space X

Equations
Instances For
    instance instReprOnePoint {X : Type u_1} [Repr X] :

    The repr uses the notation from the OnePoint locale.

    Equations
    @[match_pattern]
    def OnePoint.infty {X : Type u_1} :

    The point at infinity

    Equations
    Instances For

      The point at infinity

      Equations
      Instances For
        @[match_pattern]
        def OnePoint.some {X : Type u_1} :
        XOnePoint X

        Coercion from X to OnePoint X.

        Equations
        Instances For
          @[simp]
          theorem OnePoint.some_eq_iff {X : Type u_1} (x₁ x₂ : X) :
          x₁ = x₂ x₁ = x₂
          instance OnePoint.instCoeTC {X : Type u_1} :
          Equations
          theorem OnePoint.forall {X : Type u_1} {p : OnePoint XProp} :
          (∀ (x : OnePoint X), p x) p OnePoint.infty ∀ (x : X), p x
          theorem OnePoint.exists {X : Type u_1} {p : OnePoint XProp} :
          (∃ (x : OnePoint X), p x) p OnePoint.infty ∃ (x : X), p x
          theorem OnePoint.coe_eq_coe {X : Type u_1} {x y : X} :
          x = y x = y
          @[simp]
          theorem OnePoint.coe_ne_infty {X : Type u_1} (x : X) :
          @[simp]
          theorem OnePoint.infty_ne_coe {X : Type u_1} (x : X) :
          def OnePoint.rec {X : Type u_1} {C : OnePoint XSort u_3} (infty : C OnePoint.infty) (coe : (x : X) → C x) (z : OnePoint X) :
          C z

          Recursor for OnePoint using the preferred forms and ↑x.

          Equations
          Instances For
            @[inline]
            def OnePoint.elim {X : Type u_1} {Y : Type u_2} :
            OnePoint XY(XY)Y

            An elimination principle for OnePoint.

            Equations
            Instances For
              @[simp]
              theorem OnePoint.elim_infty {X : Type u_1} {Y : Type u_2} (y : Y) (f : XY) :
              OnePoint.infty.elim y f = y
              @[simp]
              theorem OnePoint.elim_some {X : Type u_1} {Y : Type u_2} (y : Y) (f : XY) (x : X) :
              (↑x).elim y f = f x
              theorem OnePoint.ne_infty_iff_exists {X : Type u_1} {x : OnePoint X} :
              x OnePoint.infty ∃ (y : X), y = x
              def OnePoint.map {X : Type u_1} {Y : Type u_2} (f : XY) :

              Extend a map f : X → Y to a map OnePoint X → OnePoint Y by sending infinity to infinity.

              Equations
              Instances For
                @[simp]
                theorem OnePoint.map_infty {X : Type u_1} {Y : Type u_2} (f : XY) :
                @[simp]
                theorem OnePoint.map_some {X : Type u_1} {Y : Type u_2} (f : XY) (x : X) :
                OnePoint.map f x = (f x)
                @[simp]
                theorem OnePoint.map_id {X : Type u_1} :
                theorem OnePoint.map_comp {X : Type u_1} {Y : Type u_2} {Z : Type u_3} (f : YZ) (g : XY) :

                Topological space structure on OnePoint X #

                We define a topological space structure on OnePoint X so that s is open if and only if

                Then we reformulate this definition in a few different ways, and prove that (↑) : X → OnePoint X is an open embedding. If X is not a compact space, then we also prove that (↑) has dense range, so it is a dense embedding.

                Equations
                • One or more equations did not get rendered due to their size.

                An open set in OnePoint X constructed from a closed compact set in X

                Equations
                Instances For
                  @[deprecated OnePoint.isOpenEmbedding_coe (since := "2024-10-18")]

                  Alias of OnePoint.isOpenEmbedding_coe.

                  instance OnePoint.nhdsWithin_compl_coe_neBot {X : Type u_1} [TopologicalSpace X] (x : X) [h : (nhdsWithin x {x}).NeBot] :
                  (nhdsWithin x {x}).NeBot

                  If x is not an isolated point of X, then x : OnePoint X is not an isolated point of OnePoint X.

                  If X is a non-compact space, then is not an isolated point of OnePoint X.

                  @[instance 900]
                  instance OnePoint.nhdsWithin_compl_neBot {X : Type u_1} [TopologicalSpace X] [∀ (x : X), (nhdsWithin x {x}).NeBot] [NoncompactSpace X] (x : OnePoint X) :
                  (nhdsWithin x {x}).NeBot
                  theorem OnePoint.tendsto_nhds_infty {X : Type u_1} [TopologicalSpace X] {α : Type u_3} {f : OnePoint Xα} {l : Filter α} :
                  theorem OnePoint.continuousAt_coe {X : Type u_1} [TopologicalSpace X] {Y : Type u_3} [TopologicalSpace Y] {f : OnePoint XY} {x : X} :
                  theorem OnePoint.continuous_iff {X : Type u_1} [TopologicalSpace X] {Y : Type u_3} [TopologicalSpace Y] (f : OnePoint XY) :
                  Continuous f Filter.Tendsto (fun (x : X) => f x) (Filter.coclosedCompact X) (nhds (f OnePoint.infty)) Continuous fun (x : X) => f x
                  def OnePoint.continuousMapMk {X : Type u_1} [TopologicalSpace X] {Y : Type u_3} [TopologicalSpace Y] (f : C(X, Y)) (y : Y) (h : Filter.Tendsto (⇑f) (Filter.coclosedCompact X) (nhds y)) :

                  A constructor for continuous maps out of a one point compactification, given a continuous map from the underlying space and a limit value at infinity.

                  Equations
                  Instances For

                    A constructor for continuous maps out of a one point compactification of a discrete space, given a map from the underlying space and a limit value at infinity.

                    Equations
                    Instances For
                      noncomputable def OnePoint.continuousMapDiscreteEquiv (X : Type u_1) [TopologicalSpace X] (Y : Type u_3) [DiscreteTopology X] [TopologicalSpace Y] [T2Space Y] [Infinite X] :
                      C(OnePoint X, Y) { f : XY // ∃ (L : Y), Filter.Tendsto (fun (x : X) => f x) Filter.cofinite (nhds L) }

                      Continuous maps out of the one point compactification of an infinite discrete space to a Hausdorff space correspond bijectively to "convergent" maps out of the discrete space.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For

                        A constructor for continuous maps out of the one point compactification of , given a sequence and a limit value at infinity.

                        Equations
                        Instances For
                          noncomputable def OnePoint.continuousMapNatEquiv (Y : Type u_3) [TopologicalSpace Y] [T2Space Y] :
                          C(OnePoint , Y) { f : Y // ∃ (L : Y), Filter.Tendsto (fun (x : ) => f x) Filter.atTop (nhds L) }

                          Continuous maps out of the one point compactification of to a Hausdorff space Y correspond bijectively to convergent sequences in Y.

                          Equations
                          • One or more equations did not get rendered due to their size.
                          Instances For

                            If X is not a compact space, then the natural embedding X → OnePoint X has dense range.

                            @[deprecated OnePoint.isDenseEmbedding_coe (since := "2024-09-30")]

                            Alias of OnePoint.isDenseEmbedding_coe.

                            @[simp]
                            theorem OnePoint.specializes_coe {X : Type u_1} [TopologicalSpace X] {x y : X} :
                            x y x y
                            @[simp]
                            theorem OnePoint.inseparable_coe {X : Type u_1} [TopologicalSpace X] {x y : X} :
                            theorem OnePoint.inseparable_iff {X : Type u_1} [TopologicalSpace X] {x y : OnePoint X} :
                            Inseparable x y x = OnePoint.infty y = OnePoint.infty ∃ (x' : X), x = x' ∃ (y' : X), y = y' Inseparable x' y'

                            Compactness and separation properties #

                            In this section we prove that OnePoint X is a compact space; it is a T₀ (resp., T₁) space if the original space satisfies the same separation axiom. If the original space is a locally compact Hausdorff space, then OnePoint X is a normal (hence, T₃ and Hausdorff) space.

                            Finally, if the original space X is not compact and is a preconnected space, then OnePoint X is a connected space.

                            For any topological space X, its one point compactification is a compact space.

                            The one point compactification of a T0Space space is a T0Space.

                            The one point compactification of a T1Space space is a T1Space.

                            The one point compactification of a locally compact R₁ space is a normal topological space.

                            If X is an infinite type with discrete topology (e.g., ), then the identity map from CofiniteTopology (OnePoint X) to OnePoint X is not continuous.

                            noncomputable def OnePoint.equivOfIsEmbeddingOfRangeEq {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [T2Space Y] [CompactSpace Y] (y : Y) (f : XY) (hf : Topology.IsEmbedding f) (hy : Set.range f = {y}) :

                            If f embeds X into a compact Hausdorff space Y, and has exactly one point outside its range, then (Y, f) is the one-point compactification of X.

                            Equations
                            Instances For
                              @[simp]
                              theorem OnePoint.equivOfIsEmbeddingOfRangeEq_apply_coe {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] [T2Space Y] [CompactSpace Y] (y : Y) (f : XY) (hf : Topology.IsEmbedding f) (hy : Set.range f = {y}) (x : X) :

                              Extend a homeomorphism of topological spaces to the homeomorphism of their one point compactifications.

                              Equations
                              • h.onePointCongr = { toFun := OnePoint.map h, invFun := OnePoint.map h.symm, left_inv := , right_inv := , continuous_toFun := , continuous_invFun := }
                              Instances For
                                @[simp]
                                theorem Homeomorph.onePointCongr_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] (h : X ≃ₜ Y) (a✝ : OnePoint X) :
                                h.onePointCongr a✝ = OnePoint.map (⇑h) a✝
                                @[simp]
                                theorem Homeomorph.onePointCongr_symm_apply {X : Type u_1} {Y : Type u_2} [TopologicalSpace X] [TopologicalSpace Y] (h : X ≃ₜ Y) (a✝ : OnePoint Y) :
                                h.onePointCongr.symm a✝ = OnePoint.map (⇑h.symm) a✝
                                theorem Continuous.homeoOfEquivCompactToT2.t1_counterexample :
                                ∃ (α : Type) (β : Type) (x : TopologicalSpace α) (x_1 : TopologicalSpace β), CompactSpace α T1Space β ∃ (f : α β), Continuous f ¬Continuous f.symm

                                A concrete counterexample shows that Continuous.homeoOfEquivCompactToT2 cannot be generalized from T2Space to T1Space.

                                Let α = OnePoint be the one-point compactification of , and let β be the same space OnePoint with the cofinite topology. Then α is compact, β is T1, and the identity map id : α → β is a continuous equivalence that is not a homeomorphism.