The category of locales #
This file defines Locale
, the category of locales. This is the opposite of the category of frames.
Equations
- instLocaleLargeCategory = CategoryTheory.Category.opposite
Equations
- Locale.instCoeSortType = { coe := fun (X : Locale) => ↑(Opposite.unop X) }
Equations
- X.instFrameαUnopFrm = (Opposite.unop X).str
@[simp]
Equations
- Locale.instInhabited = { default := Locale.of PUnit.{?u.3 + 1} }
The forgetful functor from Top
to Locale
which forgets that the space has "enough points".
Equations
- topToLocale = topCatOpToFrm.rightOp
Instances For
@[simp]
theorem
topToLocale_map :
∀ {X Y : TopCat} (f : X ⟶ Y), topToLocale.map f = Quiver.Hom.op (TopologicalSpace.Opens.comap f)
@[simp]
theorem
topToLocale_obj
(X : TopCat)
:
topToLocale.obj X = Opposite.op (Frm.of (TopologicalSpace.Opens ↑X))