Correspondence between nontrivial nonarchimedean norms and rank one valuations #
Nontrivial nonarchimedean norms correspond to rank one valuations.
Main Definitions #
NormedField.toValued
: the valued field structure on a nonarchimedean normed fieldK
, determined by the norm.Valued.toNormedField
: the normed field structure determined by a rank one valuation.
Tags #
norm, nonarchimedean, nontrivial, valuation, rank one
The valuation on a nonarchimedean normed field K
defined as nnnorm
.
Equations
- NormedField.valuation = { toFun := nnnorm, map_zero' := ⋯, map_one' := ⋯, map_mul' := ⋯, map_add_le_max' := ⋯ }
Instances For
@[simp]
theorem
NormedField.valuation_apply
{K : Type u_1}
[hK : NormedField K]
[IsUltrametricDist K]
(x : K)
:
The valued field structure on a nonarchimedean normed field K
, determined by the norm.
Equations
Instances For
instance
NormedField.instRankOneNNRealValuation
{K : Type u_2}
[NontriviallyNormedField K]
[IsUltrametricDist K]
:
NormedField.valuation.RankOne
Equations
- NormedField.instRankOneNNRealValuation = { hom := MonoidWithZeroHom.id NNReal, strictMono' := NormedField.instRankOneNNRealValuation.proof_1, nontrivial' := ⋯ }
def
Valued.norm
{L : Type u_1}
[Field L]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
:
L → ℝ
The norm function determined by a rank one valuation on a field L
.
Equations
- Valued.norm x = ↑((Valuation.RankOne.hom Valued.v) (Valued.v x))
Instances For
theorem
Valued.norm_nonneg
{L : Type u_1}
[Field L]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
(x : L)
:
0 ≤ Valued.norm x
theorem
Valued.norm_add_le
{L : Type u_1}
[Field L]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
(x y : L)
:
Valued.norm (x + y) ≤ Valued.norm x ⊔ Valued.norm y
theorem
Valued.norm_eq_zero
{L : Type u_1}
[Field L]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
{x : L}
(hx : Valued.norm x = 0)
:
x = 0
def
Valued.toNormedField
(L : Type u_1)
[Field L]
(Γ₀ : Type u_2)
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
:
The normed field structure determined by a rank one valuation.
Equations
- Valued.toNormedField L Γ₀ = NormedField.mk ⋯ ⋯
Instances For
theorem
Valued.isNonarchimedean_norm
(L : Type u_1)
[Field L]
(Γ₀ : Type u_2)
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
:
IsNonarchimedean fun (x : L) => ‖x‖
instance
Valued.instIsUltrametricDist
(L : Type u_1)
[Field L]
(Γ₀ : Type u_2)
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
:
theorem
Valued.coe_valuation_eq_rankOne_hom_comp_valuation
(L : Type u_1)
[Field L]
(Γ₀ : Type u_2)
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
:
def
Valued.toNontriviallyNormedField
{L : Type u_1}
[Field L]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
[val : Valued L Γ₀]
[hv : Valued.v.RankOne]
:
The nontrivially normed field structure determined by a rank one valuation.