Algebraic operations on SeparationQuotient
#
In this file we construct a section of the quotient map E → SeparationQuotient E
as a continuous
linear map SeparationQuotient E →L[K] E
.
theorem
SeparationQuotient.exists_out_continuousLinearMap
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul K E]
:
∃ (f : SeparationQuotient E →L[K] E),
(SeparationQuotient.mkCLM K E).comp f = ContinuousLinearMap.id K (SeparationQuotient E)
There exists a continuous K
-linear map from SeparationQuotient E
to E
such that mk (outCLM x) = x
for all x
.
Note that continuity of this map comes for free, because mk
is a topology inducing map.
noncomputable def
SeparationQuotient.outCLM
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul K E]
:
SeparationQuotient E →L[K] E
A continuous K
-linear map from SeparationQuotient E
to E
such that mk (outCLM x) = x
for all x
.
Equations
- SeparationQuotient.outCLM K E = ⋯.choose
Instances For
@[simp]
theorem
SeparationQuotient.mkCLM_comp_outCLM
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul K E]
:
(SeparationQuotient.mkCLM K E).comp (SeparationQuotient.outCLM K E) = ContinuousLinearMap.id K (SeparationQuotient E)
@[simp]
theorem
SeparationQuotient.mk_outCLM
(K : Type u_1)
{E : Type u_2}
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul K E]
(x : SeparationQuotient E)
:
SeparationQuotient.mk ((SeparationQuotient.outCLM K E) x) = x
@[simp]
theorem
SeparationQuotient.mk_comp_outCLM
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul K E]
:
SeparationQuotient.mk ∘ ⇑(SeparationQuotient.outCLM K E) = id
theorem
SeparationQuotient.postcomp_mkCLM_surjective
{K : Type u_1}
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul K E]
{L : Type u_3}
[Semiring L]
(σ : L →+* K)
(F : Type u_4)
[AddCommMonoid F]
[Module L F]
[TopologicalSpace F]
:
Function.Surjective (SeparationQuotient.mkCLM K E).comp
theorem
SeparationQuotient.isEmbedding_outCLM
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul K E]
:
The SeparationQuotient.outCLM K E
map is a topological embedding.
@[deprecated SeparationQuotient.isEmbedding_outCLM]
theorem
SeparationQuotient.outCLM_embedding
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul K E]
:
Alias of SeparationQuotient.isEmbedding_outCLM
.
The SeparationQuotient.outCLM K E
map is a topological embedding.
theorem
SeparationQuotient.outCLM_injective
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[TopologicalSpace E]
[TopologicalAddGroup E]
[ContinuousConstSMul K E]
:
theorem
SeparationQuotient.outCLM_isUniformInducing
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[UniformSpace E]
[UniformAddGroup E]
[ContinuousConstSMul K E]
:
@[deprecated SeparationQuotient.outCLM_isUniformInducing]
theorem
SeparationQuotient.outCLM_uniformInducing
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[UniformSpace E]
[UniformAddGroup E]
[ContinuousConstSMul K E]
:
theorem
SeparationQuotient.outCLM_isUniformEmbedding
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[UniformSpace E]
[UniformAddGroup E]
[ContinuousConstSMul K E]
:
@[deprecated SeparationQuotient.outCLM_isUniformEmbedding]
theorem
SeparationQuotient.outCLM_uniformEmbedding
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[UniformSpace E]
[UniformAddGroup E]
[ContinuousConstSMul K E]
:
theorem
SeparationQuotient.outCLM_uniformContinuous
(K : Type u_1)
(E : Type u_2)
[DivisionRing K]
[AddCommGroup E]
[Module K E]
[UniformSpace E]
[UniformAddGroup E]
[ContinuousConstSMul K E]
: