Topological closure of the submonoid closure #
In this file we prove several versions of the following statement:
if G
is a compact topological group and s : Set G
,
then the topological closures of Submonoid.closure s
and Subgroup.closure s
are equal.
The proof is based on the following observation, see mapClusterPt_self_zpow_atTop_pow
:
each x^m
, m : ℤ
is a limit point (MapClusterPt
) of the sequence x^n
, n : ℕ
, as n → ∞
.
theorem
mapClusterPt_atTop_zpow_iff_pow
{G : Type u_1}
[DivInvMonoid G]
[TopologicalSpace G]
{x y : G}
:
(MapClusterPt x Filter.atTop fun (x : ℤ) => y ^ x) ↔ MapClusterPt x Filter.atTop fun (x : ℕ) => y ^ x
theorem
mapClusterPt_atTop_zsmul_iff_nsmul
{G : Type u_1}
[SubNegMonoid G]
[TopologicalSpace G]
{x y : G}
:
(MapClusterPt x Filter.atTop fun (x : ℤ) => x • y) ↔ MapClusterPt x Filter.atTop fun (x : ℕ) => x • y
theorem
mapClusterPt_self_zpow_atTop_pow
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
(x : G)
(m : ℤ)
:
MapClusterPt (x ^ m) Filter.atTop fun (x_1 : ℕ) => x ^ x_1
theorem
mapClusterPt_self_zsmul_atTop_nsmul
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
(x : G)
(m : ℤ)
:
MapClusterPt (m • x) Filter.atTop fun (x_1 : ℕ) => x_1 • x
theorem
mapClusterPt_one_atTop_pow
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
(x : G)
:
MapClusterPt 1 Filter.atTop fun (x_1 : ℕ) => x ^ x_1
theorem
mapClusterPt_zero_atTop_nsmul
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
(x : G)
:
MapClusterPt 0 Filter.atTop fun (x_1 : ℕ) => x_1 • x
theorem
mapClusterPt_self_atTop_pow
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
(x : G)
:
MapClusterPt x Filter.atTop fun (x_1 : ℕ) => x ^ x_1
theorem
mapClusterPt_self_atTop_nsmul
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
(x : G)
:
MapClusterPt x Filter.atTop fun (x_1 : ℕ) => x_1 • x
theorem
mapClusterPt_atTop_pow_tfae
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
(x y : G)
:
[MapClusterPt x Filter.atTop fun (x : ℕ) => y ^ x, MapClusterPt x Filter.atTop fun (x : ℤ) => y ^ x,
x ∈ closure (Set.range fun (x : ℕ) => y ^ x), x ∈ closure (Set.range fun (x : ℤ) => y ^ x)].TFAE
theorem
mapClusterPt_atTop_nsmul_tfae
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
(x y : G)
:
[MapClusterPt x Filter.atTop fun (x : ℕ) => x • y, MapClusterPt x Filter.atTop fun (x : ℤ) => x • y,
x ∈ closure (Set.range fun (x : ℕ) => x • y), x ∈ closure (Set.range fun (x : ℤ) => x • y)].TFAE
theorem
mapClusterPt_atTop_pow_iff_mem_topologicalClosure_zpowers
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
{x y : G}
:
(MapClusterPt x Filter.atTop fun (x : ℕ) => y ^ x) ↔ x ∈ (Subgroup.zpowers y).topologicalClosure
theorem
mapClusterPt_atTop_nsmul_iff_mem_topologicalClosure_zmultiples
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
{x y : G}
:
(MapClusterPt x Filter.atTop fun (x : ℕ) => x • y) ↔ x ∈ (AddSubgroup.zmultiples y).topologicalClosure
@[simp]
theorem
mapClusterPt_inv_atTop_pow
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
{x y : G}
:
(MapClusterPt x⁻¹ Filter.atTop fun (x : ℕ) => y ^ x) ↔ MapClusterPt x Filter.atTop fun (x : ℕ) => y ^ x
@[simp]
theorem
mapClusterPt_neg_atTop_nsmul
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
{x y : G}
:
(MapClusterPt (-x) Filter.atTop fun (x : ℕ) => x • y) ↔ MapClusterPt x Filter.atTop fun (x : ℕ) => x • y
theorem
closure_range_zpow_eq_pow
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
(x : G)
:
theorem
closure_range_zsmul_eq_nsmul
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
(x : G)
:
theorem
denseRange_zpow_iff_pow
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
{x : G}
:
(DenseRange fun (x_1 : ℤ) => x ^ x_1) ↔ DenseRange fun (x_1 : ℕ) => x ^ x_1
theorem
denseRange_zsmul_iff_nsmul
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
{x : G}
:
(DenseRange fun (x_1 : ℤ) => x_1 • x) ↔ DenseRange fun (x_1 : ℕ) => x_1 • x
theorem
topologicalClosure_subgroupClosure_toSubmonoid
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
(s : Set G)
:
(Subgroup.closure s).topologicalClosure = (Submonoid.closure s).topologicalClosure
theorem
topologicalClosure_addSubgroupClosure_toAddSubmonoid
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
(s : Set G)
:
(AddSubgroup.closure s).topologicalClosure = (AddSubmonoid.closure s).topologicalClosure
theorem
closure_submonoidClosure_eq_closure_subgroupClosure
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
(s : Set G)
:
closure ↑(Submonoid.closure s) = closure ↑(Subgroup.closure s)
theorem
closure_addSubmonoidClosure_eq_closure_addSubgroupClosure
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
(s : Set G)
:
closure ↑(AddSubmonoid.closure s) = closure ↑(AddSubgroup.closure s)
theorem
dense_submonoidClosure_iff_subgroupClosure
{G : Type u_1}
[Group G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalGroup G]
{s : Set G}
:
Dense ↑(Submonoid.closure s) ↔ Dense ↑(Subgroup.closure s)
theorem
dense_addSubmonoidClosure_iff_addSubgroupClosure
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[CompactSpace G]
[TopologicalAddGroup G]
{s : Set G}
:
Dense ↑(AddSubmonoid.closure s) ↔ Dense ↑(AddSubgroup.closure s)