Documentation

Mathlib.Topology.Algebra.Constructions.DomMulAct

Topological space structure on Mᵈᵐᵃ and Mᵈᵃᵃ #

In this file we define TopologicalSpace structure on Mᵈᵐᵃ and Mᵈᵃᵃ and prove basic theorems about these topologies. The topologies on Mᵈᵐᵃ and Mᵈᵃᵃ are the same as the topology on M. Formally, they are induced by DomMulAct.mk.symm and DomAddAct.mk.symm, since the types aren't definitionally equal.

Tags #

topological space, group action, domain action

Put the same topological space structure on Mᵈᵐᵃ as on the original space.

Equations

Put the same topological space structure on Mᵈᵃᵃ as on the original space.

Equations
theorem DomMulAct.continuous_mk {M : Type u_1} [TopologicalSpace M] :
Continuous DomMulAct.mk
theorem DomAddAct.continuous_mk {M : Type u_1} [TopologicalSpace M] :
Continuous DomAddAct.mk
theorem DomMulAct.continuous_mk_symm {M : Type u_1} [TopologicalSpace M] :
Continuous DomMulAct.mk.symm
theorem DomAddAct.continuous_mk_symm {M : Type u_1} [TopologicalSpace M] :
Continuous DomAddAct.mk.symm

DomMulAct.mk as a homeomorphism.

Equations
  • DomMulAct.mkHomeomorph = { toEquiv := DomMulAct.mk, continuous_toFun := , continuous_invFun := }
Instances For

    DomAddAct.mk as a homeomorphism.

    Equations
    • DomAddAct.mkHomeomorph = { toEquiv := DomAddAct.mk, continuous_toFun := , continuous_invFun := }
    Instances For
      @[simp]
      theorem DomMulAct.mkHomeomorph_toEquiv {M : Type u_1} [TopologicalSpace M] :
      DomMulAct.mkHomeomorph.toEquiv = DomMulAct.mk
      @[simp]
      theorem DomAddAct.mkHomeomorph_toEquiv {M : Type u_1} [TopologicalSpace M] :
      DomAddAct.mkHomeomorph.toEquiv = DomAddAct.mk
      @[simp]
      theorem DomMulAct.coe_mkHomeomorph {M : Type u_1} [TopologicalSpace M] :
      DomMulAct.mkHomeomorph = DomMulAct.mk
      @[simp]
      theorem DomAddAct.coe_mkHomeomorph {M : Type u_1} [TopologicalSpace M] :
      DomAddAct.mkHomeomorph = DomAddAct.mk
      @[simp]
      theorem DomMulAct.coe_mkHomeomorph_symm {M : Type u_1} [TopologicalSpace M] :
      DomMulAct.mkHomeomorph.symm = DomMulAct.mk.symm
      @[simp]
      theorem DomAddAct.coe_mkHomeomorph_symm {M : Type u_1} [TopologicalSpace M] :
      DomAddAct.mkHomeomorph.symm = DomAddAct.mk.symm
      theorem DomMulAct.isInducing_mk {M : Type u_1} [TopologicalSpace M] :
      IsInducing DomMulAct.mk
      theorem DomAddAct.isInducing_mk {M : Type u_1} [TopologicalSpace M] :
      IsInducing DomAddAct.mk
      theorem DomMulAct.isEmbedding_mk {M : Type u_1} [TopologicalSpace M] :
      IsEmbedding DomMulAct.mk
      theorem DomAddAct.isEmbedding_mk {M : Type u_1} [TopologicalSpace M] :
      IsEmbedding DomAddAct.mk
      @[deprecated DomMulAct.isInducing_mk]
      theorem DomMulAct.inducing_mk {M : Type u_1} [TopologicalSpace M] :
      IsInducing DomMulAct.mk

      Alias of DomMulAct.isInducing_mk.

      @[deprecated DomMulAct.isEmbedding_mk]
      theorem DomMulAct.embedding_mk {M : Type u_1} [TopologicalSpace M] :
      IsEmbedding DomMulAct.mk

      Alias of DomMulAct.isEmbedding_mk.

      @[deprecated DomMulAct.isQuotientMap_mk]
      theorem DomMulAct.quotientMap_mk {M : Type u_1} [TopologicalSpace M] :
      IsQuotientMap DomMulAct.mk

      Alias of DomMulAct.isQuotientMap_mk.

      @[deprecated DomMulAct.isClosedEmbedding_mk]

      Alias of DomMulAct.isClosedEmbedding_mk.

      @[deprecated DomMulAct.isOpenEmbedding_mk]
      theorem DomMulAct.openEmbedding_mk {M : Type u_1} [TopologicalSpace M] :
      IsOpenEmbedding DomMulAct.mk

      Alias of DomMulAct.isOpenEmbedding_mk.

      theorem DomMulAct.isInducing_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsInducing DomMulAct.mk.symm
      theorem DomAddAct.isInducing_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsInducing DomAddAct.mk.symm
      theorem DomMulAct.isEmbedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsEmbedding DomMulAct.mk.symm
      theorem DomAddAct.isEmbedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsEmbedding DomAddAct.mk.symm
      @[deprecated DomMulAct.isInducing_mk_symm]
      theorem DomMulAct.inducing_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsInducing DomMulAct.mk.symm

      Alias of DomMulAct.isInducing_mk_symm.

      @[deprecated DomMulAct.isEmbedding_mk_symm]
      theorem DomMulAct.embedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsEmbedding DomMulAct.mk.symm

      Alias of DomMulAct.isEmbedding_mk_symm.

      @[deprecated DomMulAct.isClosedEmbedding_mk_symm]
      theorem DomMulAct.closedEmbedding_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsClosedEmbedding DomMulAct.mk.symm

      Alias of DomMulAct.isClosedEmbedding_mk_symm.

      theorem DomMulAct.isQuotientMap_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsQuotientMap DomMulAct.mk.symm
      theorem DomAddAct.isQuotientMap_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsQuotientMap DomAddAct.mk.symm
      @[deprecated DomMulAct.isQuotientMap_mk_symm]
      theorem DomMulAct.quotientMap_mk_symm {M : Type u_1} [TopologicalSpace M] :
      IsQuotientMap DomMulAct.mk.symm

      Alias of DomMulAct.isQuotientMap_mk_symm.

      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      Equations
      • =
      @[simp]
      theorem DomMulAct.map_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.map (⇑DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk x)
      @[simp]
      theorem DomAddAct.map_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.map (⇑DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk x)
      @[simp]
      theorem DomMulAct.map_mk_symm_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵐᵃ) :
      Filter.map (⇑DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk.symm x)
      @[simp]
      theorem DomAddAct.map_mk_symm_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵃᵃ) :
      Filter.map (⇑DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk.symm x)
      @[simp]
      theorem DomMulAct.comap_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵐᵃ) :
      Filter.comap (⇑DomMulAct.mk) (nhds x) = nhds (DomMulAct.mk.symm x)
      @[simp]
      theorem DomAddAct.comap_mk_nhds {M : Type u_1} [TopologicalSpace M] (x : Mᵈᵃᵃ) :
      Filter.comap (⇑DomAddAct.mk) (nhds x) = nhds (DomAddAct.mk.symm x)
      @[simp]
      theorem DomMulAct.comap_mk.symm_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.comap (⇑DomMulAct.mk.symm) (nhds x) = nhds (DomMulAct.mk x)
      @[simp]
      theorem DomAddAct.comap_mk.symm_nhds {M : Type u_1} [TopologicalSpace M] (x : M) :
      Filter.comap (⇑DomAddAct.mk.symm) (nhds x) = nhds (DomAddAct.mk x)