Documentation

Mathlib.Tactic.LinearCombination.Lemmas

Lemmas for the linear_combination tactic #

These should not be used directly in user code.

theorem Mathlib.Tactic.LinearCombination.add_pf {α : Type u_1} {a₁ : α} {a₂ : α} {b₁ : α} {b₂ : α} [Add α] (p₁ : a₁ = b₁) (p₂ : a₂ = b₂) :
a₁ + a₂ = b₁ + b₂
theorem Mathlib.Tactic.LinearCombination.pf_mul_c {α : Type u_1} {a : α} {b : α} [Mul α] (p : a = b) (c : α) :
a * c = b * c
theorem Mathlib.Tactic.LinearCombination.c_mul_pf {α : Type u_1} {b : α} {c : α} [Mul α] (p : b = c) (a : α) :
a * b = a * c
theorem Mathlib.Tactic.LinearCombination.pf_div_c {α : Type u_1} {a : α} {b : α} [Div α] (p : a = b) (c : α) :
a / c = b / c
theorem Mathlib.Tactic.LinearCombination.eq_of_add {α : Type u_1} {a : α} {a' : α} {b : α} {b' : α} [Add α] [IsRightCancelAdd α] (p : a = b) (H : a' + b = b' + a) :
a' = b'
theorem Mathlib.Tactic.LinearCombination.eq_rearrange {G : Type u_3} [AddGroup G] {a : G} {b : G} :
a - b = 0a = b

Alias of the forward direction of sub_eq_zero.

theorem Mathlib.Tactic.LinearCombination.eq_of_add_pow {α : Type u_1} {a : α} {a' : α} {b : α} {b' : α} [Ring α] [NoZeroDivisors α] (n : ) (p : a = b) (H : (a' - b') ^ n - (a - b) = 0) :
a' = b'