Bicategorical composition ⊗≫
(composition up to associators) #
We provide f ⊗≫ g
, the bicategoricalComp
operation,
which automatically inserts associators and unitors as needed
to make the target of f
match the source of g
.
A typeclass carrying a choice of bicategorical structural isomorphism between two objects.
Used by the ⊗≫
bicategorical composition operator, and the coherence
tactic.
- iso : f ≅ g
The chosen structural isomorphism between to 1-morphisms.
Instances
Notation for identities up to unitors and associators.
Equations
- CategoryTheory.Bicategory.«term⊗𝟙» = Lean.ParserDescr.node `CategoryTheory.Bicategory.term⊗𝟙 1024 (Lean.ParserDescr.symbol " ⊗𝟙 ")
Instances For
Construct an isomorphism between two objects in a bicategorical category out of unitors and associators.
Equations
- CategoryTheory.bicategoricalIso f g = CategoryTheory.BicategoricalCoherence.iso
Instances For
Compose two morphisms in a bicategorical category, inserting unitors and associators between as necessary.
Equations
- CategoryTheory.bicategoricalComp η θ = CategoryTheory.CategoryStruct.comp η (CategoryTheory.CategoryStruct.comp CategoryTheory.BicategoricalCoherence.iso.hom θ)
Instances For
Compose two morphisms in a bicategorical category, inserting unitors and associators between as necessary.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Compose two isomorphisms in a bicategorical category, inserting unitors and associators between as necessary.
Equations
- CategoryTheory.bicategoricalIsoComp η θ = η ≪≫ CategoryTheory.BicategoricalCoherence.iso ≪≫ θ
Instances For
Compose two isomorphisms in a bicategorical category, inserting unitors and associators between as necessary.
Equations
- One or more equations did not get rendered due to their size.
Instances For
Equations
- CategoryTheory.BicategoricalCoherence.refl f = { iso := CategoryTheory.Iso.refl f }
Equations
- CategoryTheory.BicategoricalCoherence.whiskerLeft f g h = { iso := CategoryTheory.Bicategory.whiskerLeftIso f CategoryTheory.BicategoricalCoherence.iso }
Equations
- CategoryTheory.BicategoricalCoherence.whiskerRight f g h = { iso := CategoryTheory.Bicategory.whiskerRightIso CategoryTheory.BicategoricalCoherence.iso h }
Equations
- One or more equations did not get rendered due to their size.
Equations
- One or more equations did not get rendered due to their size.
Equations
- CategoryTheory.BicategoricalCoherence.left f g = { iso := CategoryTheory.Bicategory.leftUnitor f ≪≫ CategoryTheory.BicategoricalCoherence.iso }
Equations
- CategoryTheory.BicategoricalCoherence.left' f g = { iso := CategoryTheory.BicategoricalCoherence.iso ≪≫ (CategoryTheory.Bicategory.leftUnitor g).symm }
Equations
- CategoryTheory.BicategoricalCoherence.right f g = { iso := CategoryTheory.Bicategory.rightUnitor f ≪≫ CategoryTheory.BicategoricalCoherence.iso }
Equations
- CategoryTheory.BicategoricalCoherence.right' f g = { iso := CategoryTheory.BicategoricalCoherence.iso ≪≫ (CategoryTheory.Bicategory.rightUnitor g).symm }
Equations
- CategoryTheory.BicategoricalCoherence.assoc f g h i = { iso := CategoryTheory.Bicategory.associator f g h ≪≫ CategoryTheory.BicategoricalCoherence.iso }
Equations
- CategoryTheory.BicategoricalCoherence.assoc' f g h i = { iso := CategoryTheory.BicategoricalCoherence.iso ≪≫ (CategoryTheory.Bicategory.associator f g h).symm }