Documentation

Mathlib.SetTheory.Ordinal.FixedPointApproximants

Ordinal Approximants for the Fixed points on complete lattices #

This file sets up the ordinal-indexed approximation theory of fixed points of a monotone function in a complete lattice [Cousot1979]. The proof follows loosely the one from [Echenique2005].

However, the proof given here is not constructive as we use the non-constructive axiomatization of ordinals from mathlib. It still allows an approximation scheme indexed over the ordinals.

Main definitions #

Main theorems #

References #

Tags #

fixed point, complete lattice, monotone function, ordinals, approximation

@[irreducible]
def OrdinalApprox.lfpApprox {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) (a : Ordinal.{u}) :
α

The ordinal-indexed sequence approximating the least fixed point greater than an initial value x. It is defined in such a way that we have lfpApprox 0 x = x and lfpApprox a x = ⨆ b < a, f (lfpApprox b x).

Equations
Instances For
    theorem OrdinalApprox.le_lfpApprox {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) {a : Ordinal.{u}} :
    theorem OrdinalApprox.lfpApprox_add_one {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) (h : x f x) (a : Ordinal.{u}) :
    theorem OrdinalApprox.lfpApprox_eq_of_mem_fixedPoints {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) {a b : Ordinal.{u}} (h_init : x f x) (h_ab : a b) (h : OrdinalApprox.lfpApprox f x a Function.fixedPoints f) :

    The approximations of the least fixed point stabilize at a fixed point of f

    theorem OrdinalApprox.exists_lfpApprox_eq_lfpApprox {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) :
    a < (Order.succ (Cardinal.mk α)).ord, b < (Order.succ (Cardinal.mk α)).ord, a b OrdinalApprox.lfpApprox f x a = OrdinalApprox.lfpApprox f x b

    There are distinct indices smaller than the successor of the domain's cardinality yielding the same value

    theorem OrdinalApprox.lfpApprox_mem_fixedPoints_of_eq {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) {a b c : Ordinal.{u}} (h_init : x f x) (h_ab : a < b) (h_ac : a c) (h_fab : OrdinalApprox.lfpApprox f x a = OrdinalApprox.lfpApprox f x b) :

    If the sequence of ordinal-indexed approximations takes a value twice, then it actually stabilised at that value.

    theorem OrdinalApprox.lfpApprox_ord_mem_fixedPoint {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) (h_init : x f x) :

    The approximation at the index of the successor of the domain's cardinality is a fixed point

    theorem OrdinalApprox.lfpApprox_le_of_mem_fixedPoints {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) {a : α} (h_a : a Function.fixedPoints f) (h_le_init : x a) (i : Ordinal.{u}) :

    Every value of the approximation is less or equal than every fixed point of f greater or equal than the initial value

    theorem OrdinalApprox.lfpApprox_ord_eq_lfp {α : Type u} [CompleteLattice α] (f : α →o α) :
    OrdinalApprox.lfpApprox f (Order.succ (Cardinal.mk α)).ord = OrderHom.lfp f

    The approximation sequence converges at the successor of the domain's cardinality to the least fixed point if starting from

    Some approximation of the least fixed point starting from is the least fixed point.

    @[irreducible]
    def OrdinalApprox.gfpApprox {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) (a : Ordinal.{u}) :
    α

    The ordinal-indexed sequence approximating the greatest fixed point greater than an initial value x. It is defined in such a way that we have gfpApprox 0 x = x and gfpApprox a x = ⨅ b < a, f (lfpApprox b x).

    Equations
    Instances For
      theorem OrdinalApprox.gfpApprox_le {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) {a : Ordinal.{u}} :
      theorem OrdinalApprox.gfpApprox_add_one {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) (h : f x x) (a : Ordinal.{u}) :
      theorem OrdinalApprox.gfpApprox_eq_of_mem_fixedPoints {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) {a b : Ordinal.{u}} (h_init : f x x) (h_ab : a b) (h : OrdinalApprox.gfpApprox f x a Function.fixedPoints f) :

      The approximations of the greatest fixed point stabilize at a fixed point of f

      theorem OrdinalApprox.exists_gfpApprox_eq_gfpApprox {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) :
      a < (Order.succ (Cardinal.mk α)).ord, b < (Order.succ (Cardinal.mk α)).ord, a b OrdinalApprox.gfpApprox f x a = OrdinalApprox.gfpApprox f x b

      There are distinct indices smaller than the successor of the domain's cardinality yielding the same value

      theorem OrdinalApprox.gfpApprox_ord_mem_fixedPoint {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) (h_init : f x x) :

      The approximation at the index of the successor of the domain's cardinality is a fixed point

      theorem OrdinalApprox.le_gfpApprox_of_mem_fixedPoints {α : Type u} [CompleteLattice α] (f : α →o α) (x : α) {a : α} (h_a : a Function.fixedPoints f) (h_le_init : a x) (i : Ordinal.{u}) :

      Every value of the approximation is greater or equal than every fixed point of f less or equal than the initial value

      theorem OrdinalApprox.gfpApprox_ord_eq_gfp {α : Type u} [CompleteLattice α] (f : α →o α) :
      OrdinalApprox.gfpApprox f (Order.succ (Cardinal.mk α)).ord = OrderHom.gfp f

      The approximation sequence converges at the successor of the domain's cardinality to the greatest fixed point if starting from

      Some approximation of the least fixed point starting from is the greatest fixed point.