Results on the cardinality of finitely supported functions and multisets. #
@[simp]
theorem
Cardinal.mk_finsupp_lift_of_fintype
(α : Type u)
(β : Type v)
[Fintype α]
[Zero β]
:
Cardinal.mk (α →₀ β) = Cardinal.lift.{u, v} (Cardinal.mk β) ^ Fintype.card α
theorem
Cardinal.mk_finsupp_of_fintype
(α : Type u)
(β : Type u)
[Fintype α]
[Zero β]
:
Cardinal.mk (α →₀ β) = Cardinal.mk β ^ Fintype.card α
@[simp]
theorem
Cardinal.mk_finsupp_lift_of_infinite
(α : Type u)
(β : Type v)
[Infinite α]
[Zero β]
[Nontrivial β]
:
Cardinal.mk (α →₀ β) = max (Cardinal.lift.{v, u} (Cardinal.mk α)) (Cardinal.lift.{u, v} (Cardinal.mk β))
theorem
Cardinal.mk_finsupp_of_infinite
(α : Type u)
(β : Type u)
[Infinite α]
[Zero β]
[Nontrivial β]
:
Cardinal.mk (α →₀ β) = max (Cardinal.mk α) (Cardinal.mk β)
@[simp]
theorem
Cardinal.mk_finsupp_lift_of_infinite'
(α : Type u)
(β : Type v)
[Nonempty α]
[Zero β]
[Infinite β]
:
Cardinal.mk (α →₀ β) = max (Cardinal.lift.{v, u} (Cardinal.mk α)) (Cardinal.lift.{u, v} (Cardinal.mk β))
theorem
Cardinal.mk_finsupp_of_infinite'
(α : Type u)
(β : Type u)
[Nonempty α]
[Zero β]
[Infinite β]
:
Cardinal.mk (α →₀ β) = max (Cardinal.mk α) (Cardinal.mk β)
theorem
Cardinal.mk_finsupp_nat
(α : Type u)
[Nonempty α]
:
Cardinal.mk (α →₀ ℕ) = max (Cardinal.mk α) Cardinal.aleph0
@[simp]
theorem
Cardinal.mk_multiset_of_nonempty
(α : Type u)
[Nonempty α]
:
Cardinal.mk (Multiset α) = max (Cardinal.mk α) Cardinal.aleph0
theorem
Cardinal.mk_multiset_of_infinite
(α : Type u)
[Infinite α]
:
Cardinal.mk (Multiset α) = Cardinal.mk α