Documentation

Mathlib.RingTheory.Valuation.Quotient

The valuation on a quotient ring #

The support of a valuation v : Valuation R Γ₀ is supp v. If J is an ideal of R with h : J ⊆ supp v then the induced valuation on R / J = Ideal.Quotient J is onQuot v h.

def Valuation.onQuotVal {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
R JΓ₀

If hJ : J ⊆ supp v then onQuotVal hJ is the induced function on R / J as a function. Note: it's just the function; the valuation is onQuot hJ.

Equations
Instances For
    def Valuation.onQuot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
    Valuation (R J) Γ₀

    The extension of valuation v on R to valuation on R / J if J ⊆ supp v.

    Equations
    • v.onQuot hJ = { toFun := v.onQuotVal hJ, map_zero' := , map_one' := , map_mul' := , map_add_le_max' := }
    Instances For
      @[simp]
      theorem Valuation.onQuot_comap_eq {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
      Valuation.comap (Ideal.Quotient.mk J) (v.onQuot hJ) = v
      theorem Valuation.self_le_supp_comap {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (J : Ideal R) (v : Valuation (R J) Γ₀) :
      @[simp]
      theorem Valuation.comap_onQuot_eq {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (J : Ideal R) (v : Valuation (R J) Γ₀) :
      (Valuation.comap (Ideal.Quotient.mk J) v).onQuot = v
      theorem Valuation.supp_quot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
      (v.onQuot hJ).supp = Ideal.map (Ideal.Quotient.mk J) v.supp

      The quotient valuation on R / J has support (supp v) / J if J ⊆ supp v.

      theorem Valuation.supp_quot_supp {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedCommMonoidWithZero Γ₀] (v : Valuation R Γ₀) :
      (v.onQuot ).supp = 0
      def AddValuation.onQuotVal {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
      R JΓ₀

      If hJ : J ⊆ supp v then onQuotVal hJ is the induced function on R / J as a function. Note: it's just the function; the valuation is onQuot hJ.

      Equations
      Instances For
        def AddValuation.onQuot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
        AddValuation (R J) Γ₀

        The extension of valuation v on R to valuation on R / J if J ⊆ supp v.

        Equations
        Instances For
          @[simp]
          theorem AddValuation.onQuot_comap_eq {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
          theorem AddValuation.comap_supp {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {S : Type u_3} [CommRing S] (f : S →+* R) :
          (AddValuation.comap f v).supp = Ideal.comap f v.supp
          theorem AddValuation.self_le_supp_comap {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (J : Ideal R) (v : AddValuation (R J) Γ₀) :
          @[simp]
          theorem AddValuation.comap_onQuot_eq {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (J : Ideal R) (v : AddValuation (R J) Γ₀) :
          theorem AddValuation.supp_quot {R : Type u_1} {Γ₀ : Type u_2} [CommRing R] [LinearOrderedAddCommMonoidWithTop Γ₀] (v : AddValuation R Γ₀) {J : Ideal R} (hJ : J v.supp) :
          (v.onQuot hJ).supp = Ideal.map (Ideal.Quotient.mk J) v.supp

          The quotient valuation on R / J has support (supp v) / J if J ⊆ supp v.