Minimal polynomials. #
We prove some results about valuations of zero coefficients of minimal polynomials.
Let K
be a field with a valuation v
and let L
be a field extension of K
.
Main Results #
coeff_zero_minpoly
: forx ∈ K
the valuation of the zeroth coefficient of the minimal polynomial ofalgebra_map K L x
overK
is equal to the valuation ofx
.pow_coeff_zero_ne_zero_of_unit
: for any unitx : Lˣ
, we prove that a certain power of the valuation of zeroth coefficient of the minimal polynomial ofx
overK
is nonzero. This lemma is helpful for defining the valuation onL
inducingv
.
@[simp]
theorem
Valuation.coeff_zero_minpoly
{K : Type u_1}
[Field K]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation K Γ₀)
(L : Type u_3)
[Field L]
[Algebra K L]
(x : K)
:
v ((minpoly K ((algebraMap K L) x)).coeff 0) = v x
For x ∈ K
the valuation of the zeroth coefficient of the minimal polynomial
of algebra_map K L x
over K
is equal to the valuation of x
.
theorem
Valuation.pow_coeff_zero_ne_zero_of_unit
{K : Type u_1}
[Field K]
{Γ₀ : Type u_2}
[LinearOrderedCommGroupWithZero Γ₀]
(v : Valuation K Γ₀)
{L : Type u_3}
[Field L]
[Algebra K L]
[FiniteDimensional K L]
(x : L)
(hx : IsUnit x)
: