Valuation subrings are exactly the maximal local subrings #
See LocalSubring.isMax_iff
.
Note that the order on local subrings is not merely inclusion but domination.
Cast a valuation subring to a local subring.
Equations
- A.toLocalSubring = LocalSubring.mk A.toSubring
Instances For
theorem
LocalSubring.map_maximalIdeal_eq_top_of_isMax
{K : Type u_3}
[Field K]
{R : LocalSubring K}
(hR : IsMax R)
{S : Subring K}
(hS : R.toSubring < S)
:
Ideal.map (Subring.inclusion ⋯) (IsLocalRing.maximalIdeal ↥R.toSubring) = ⊤
theorem
LocalSubring.mem_of_isMax_of_isIntegral
{K : Type u_3}
[Field K]
{R : LocalSubring K}
(hR : IsMax R)
{x : K}
(hx : IsIntegral (↥R.toSubring) x)
:
x ∈ R.toSubring
theorem
ValuationSubring.isMax_toLocalSubring
{K : Type u_3}
[Field K]
(R : ValuationSubring K)
:
IsMax R.toLocalSubring
theorem
LocalSubring.exists_valuationRing_of_isMax
{K : Type u_3}
[Field K]
{R : LocalSubring K}
(hR : IsMax R)
:
∃ (R' : ValuationSubring K), R'.toLocalSubring = R
theorem
LocalSubring.isMax_iff
{K : Type u_3}
[Field K]
{A : LocalSubring K}
:
IsMax A ↔ ∃ (B : ValuationSubring K), B.toLocalSubring = A
A local subring is maximal with respect to the domination order if and only if it is a valuation ring.
theorem
LocalSubring.exists_le_valuationSubring
{K : Type u_3}
[Field K]
(A : LocalSubring K)
:
∃ (B : ValuationSubring K), A ≤ B.toLocalSubring
theorem
bijective_rangeRestrict_comp_of_valuationRing
{R : Type u_1}
{S : Type u_2}
{K : Type u_3}
[CommRing R]
[CommRing S]
[Field K]
[IsDomain R]
[ValuationRing R]
[IsLocalRing S]
[Algebra R K]
[IsFractionRing R K]
(f : R →+* S)
(g : S →+* K)
(h : g.comp f = algebraMap R K)
[IsLocalHom f]
:
Function.Bijective ⇑(g.rangeRestrict.comp f)
theorem
IsLocalRing.exists_factor_valuationRing
{R : Type u_1}
{K : Type u_3}
[CommRing R]
[Field K]
[IsLocalRing R]
(f : R →+* K)
:
∃ (A : ValuationSubring K) (h : ∀ (x : R), f x ∈ A.toSubring), IsLocalHom (f.codRestrict A.toSubring h)