Extending valuations to a localization #
We show that, given a valuation v
taking values in a linearly ordered commutative group
with zero Γ
, and a submonoid S
of v.supp.primeCompl
, the valuation v
can be naturally
extended to the localization S⁻¹A
.
noncomputable def
Valuation.extendToLocalization
{A : Type u_1}
[CommRing A]
{Γ : Type u_2}
[LinearOrderedCommGroupWithZero Γ]
(v : Valuation A Γ)
{S : Submonoid A}
(hS : S ≤ v.supp.primeCompl)
(B : Type u_3)
[CommRing B]
[Algebra A B]
[IsLocalization S B]
:
Valuation B Γ
We can extend a valuation v
on a ring to a localization at a submonoid of
the complement of v.supp
.
Equations
- v.extendToLocalization hS B = { toFun := (↑((IsLocalization.toLocalizationMap S B).lift ⋯)).toFun, map_zero' := ⋯, map_one' := ⋯, map_mul' := ⋯, map_add_le_max' := ⋯ }
Instances For
@[simp]
theorem
Valuation.extendToLocalization_apply_map_apply
{A : Type u_1}
[CommRing A]
{Γ : Type u_2}
[LinearOrderedCommGroupWithZero Γ]
(v : Valuation A Γ)
{S : Submonoid A}
(hS : S ≤ v.supp.primeCompl)
(B : Type u_3)
[CommRing B]
[Algebra A B]
[IsLocalization S B]
(a : A)
:
(v.extendToLocalization hS B) ((algebraMap A B) a) = v a