Ring of integers under a given valuation in an multiplicatively archimedean codomain #
instance
instLinearOrderedCommGroupWithZeroSubtypeMemSubmonoidMrangeValuation
{F : Type u_1}
{Γ₀ : Type u_2}
[Field F]
[LinearOrderedCommGroupWithZero Γ₀]
{v : Valuation F Γ₀}
:
theorem
Valuation.Integers.wfDvdMonoid_iff_wellFounded_gt_on_v
{F : Type u_1}
{Γ₀ : Type u_2}
{O : Type u_3}
[Field F]
[LinearOrderedCommGroupWithZero Γ₀]
[CommRing O]
[Algebra O F]
{v : Valuation F Γ₀}
(hv : v.Integers O)
:
WfDvdMonoid O ↔ WellFounded (Function.onFun (fun (x1 x2 : Γ₀) => x1 > x2) (⇑v ∘ ⇑(algebraMap O F)))
theorem
Valuation.Integers.wellFounded_gt_on_v_iff_discrete_mrange
{F : Type u_1}
{Γ₀ : Type u_2}
{O : Type u_3}
[Field F]
[LinearOrderedCommGroupWithZero Γ₀]
[CommRing O]
[Algebra O F]
{v : Valuation F Γ₀}
[Nontrivial (↥(MonoidHom.mrange v))ˣ]
(hv : v.Integers O)
:
WellFounded (Function.onFun (fun (x1 x2 : Γ₀) => x1 > x2) (⇑v ∘ ⇑(algebraMap O F))) ↔ Nonempty (↥(MonoidHom.mrange v) ≃*o WithZero (Multiplicative ℤ))
theorem
Valuation.Integers.isPrincipalIdealRing_iff_not_denselyOrdered
{F : Type u_1}
{Γ₀ : Type u_2}
{O : Type u_3}
[Field F]
[LinearOrderedCommGroupWithZero Γ₀]
[CommRing O]
[Algebra O F]
{v : Valuation F Γ₀}
[MulArchimedean Γ₀]
(hv : v.Integers O)
: