Interactions between ∑, ∏
and two sided ideals #
theorem
TwoSidedIdeal.listSum_mem
{R : Type u_1}
[NonUnitalNonAssocRing R]
(I : TwoSidedIdeal R)
{ι : Type u_2}
(l : List ι)
(f : ι → R)
(hl : ∀ x ∈ l, f x ∈ I)
:
theorem
TwoSidedIdeal.multisetSum_mem
{R : Type u_1}
[NonUnitalNonAssocRing R]
(I : TwoSidedIdeal R)
{ι : Type u_2}
(s : Multiset ι)
(f : ι → R)
(hs : ∀ x ∈ s, f x ∈ I)
:
(Multiset.map f s).sum ∈ I
theorem
TwoSidedIdeal.finsetSum_mem
{R : Type u_1}
[NonUnitalNonAssocRing R]
(I : TwoSidedIdeal R)
{ι : Type u_2}
(s : Finset ι)
(f : ι → R)
(hs : ∀ x ∈ s, f x ∈ I)
:
s.sum f ∈ I
theorem
TwoSidedIdeal.listProd_mem
{R : Type u_1}
[Ring R]
(I : TwoSidedIdeal R)
{ι : Type u_2}
(l : List ι)
(f : ι → R)
(hl : ∃ x ∈ l, f x ∈ I)
:
theorem
TwoSidedIdeal.multiSetProd_mem
{R : Type u_1}
[CommRing R]
(I : TwoSidedIdeal R)
{ι : Type u_2}
(s : Multiset ι)
(f : ι → R)
(hs : ∃ x ∈ s, f x ∈ I)
:
(Multiset.map f s).prod ∈ I
theorem
TwoSidedIdeal.finsetProd_mem
{R : Type u_1}
[CommRing R]
(I : TwoSidedIdeal R)
{ι : Type u_2}
(s : Finset ι)
(f : ι → R)
(hs : ∃ x ∈ s, f x ∈ I)
:
s.prod f ∈ I