Documentation

Mathlib.RingTheory.TwoSidedIdeal.BigOperators

Interactions between ∑, ∏ and two sided ideals #

theorem TwoSidedIdeal.listSum_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {ι : Type u_2} (l : List ι) (f : ιR) (hl : xl, f x I) :
(List.map f l).sum I
theorem TwoSidedIdeal.multisetSum_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {ι : Type u_2} (s : Multiset ι) (f : ιR) (hs : xs, f x I) :
(Multiset.map f s).sum I
theorem TwoSidedIdeal.finsetSum_mem {R : Type u_1} [NonUnitalNonAssocRing R] (I : TwoSidedIdeal R) {ι : Type u_2} (s : Finset ι) (f : ιR) (hs : xs, f x I) :
s.sum f I
theorem TwoSidedIdeal.listProd_mem {R : Type u_1} [Ring R] (I : TwoSidedIdeal R) {ι : Type u_2} (l : List ι) (f : ιR) (hl : xl, f x I) :
(List.map f l).prod I
theorem TwoSidedIdeal.multiSetProd_mem {R : Type u_1} [CommRing R] (I : TwoSidedIdeal R) {ι : Type u_2} (s : Multiset ι) (f : ιR) (hs : xs, f x I) :
(Multiset.map f s).prod I
theorem TwoSidedIdeal.finsetProd_mem {R : Type u_1} [CommRing R] (I : TwoSidedIdeal R) {ι : Type u_2} (s : Finset ι) (f : ιR) (hs : xs, f x I) :
s.prod f I