The meta properties of unramified ring homomorphisms. #
def
RingHom.FormallyUnramified
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
(f : R →+* S)
:
A ring homomorphism R →+* A
is formally unramified if Ω[A⁄R]
is trivial.
See Algebra.FormallyUnramified
.
Equations
- f.FormallyUnramified = Algebra.FormallyUnramified R S
Instances For
theorem
RingHom.formallyUnramified_algebraMap
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
[Algebra R S]
:
(algebraMap R S).FormallyUnramified ↔ Algebra.FormallyUnramified R S
theorem
RingHom.FormallyUnramified.stableUnderComposition :
RingHom.StableUnderComposition fun {R S : Type u_3} [CommRing R] [CommRing S] => RingHom.FormallyUnramified
theorem
RingHom.FormallyUnramified.respectsIso :
RingHom.RespectsIso fun {R S : Type u_3} [CommRing R] [CommRing S] => RingHom.FormallyUnramified
theorem
RingHom.FormallyUnramified.isStableUnderBaseChange :
RingHom.IsStableUnderBaseChange fun {R S : Type u_3} [CommRing R] [CommRing S] => RingHom.FormallyUnramified
theorem
RingHom.FormallyUnramified.holdsForLocalizationAway :
RingHom.HoldsForLocalizationAway fun {R S : Type u_3} [CommRing R] [CommRing S] => RingHom.FormallyUnramified
theorem
RingHom.FormallyUnramified.ofLocalizationPrime :
RingHom.OfLocalizationPrime fun {R S : Type u_3} [CommRing R] [CommRing S] => RingHom.FormallyUnramified
theorem
RingHom.FormallyUnramified.ofLocalizationSpanTarget :
RingHom.OfLocalizationSpanTarget fun {R S : Type u_3} [CommRing R] [CommRing S] => RingHom.FormallyUnramified
theorem
RingHom.FormallyUnramified.propertyIsLocal :
RingHom.PropertyIsLocal fun {R S : Type u_3} [CommRing R] [CommRing S] => RingHom.FormallyUnramified