Standard smooth ring homomorphisms #
In this file we define standard smooth ring homomorphisms and show their meta properties.
Notes #
This contribution was created as part of the AIM workshop "Formalizing algebraic geometry" in June 2024.
A ring homomorphism R →+* S
is standard smooth if S
is standard smooth as R
-algebra.
Equations
- f.IsStandardSmooth = Algebra.IsStandardSmooth R S
Instances For
theorem
RingHom.IsStandardSmoothOfRelativeDimension.toAlgebra
(n : ℕ)
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : RingHom.IsStandardSmoothOfRelativeDimension n f)
:
Helper lemma for the algebraize
tactic.
theorem
RingHom.IsStandardSmoothOfRelativeDimension.isStandardSmooth
(n : ℕ)
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
(f : R →+* S)
(hf : RingHom.IsStandardSmoothOfRelativeDimension n f)
:
f.IsStandardSmooth
theorem
RingHom.IsStandardSmoothOfRelativeDimension.comp
{n m : ℕ}
{R : Type u}
{S : Type v}
[CommRing R]
[CommRing S]
{T : Type u_1}
[CommRing T]
{g : S →+* T}
{f : R →+* S}
(hg : RingHom.IsStandardSmoothOfRelativeDimension n g)
(hf : RingHom.IsStandardSmoothOfRelativeDimension m f)
:
RingHom.IsStandardSmoothOfRelativeDimension (n + m) (g.comp f)
theorem
RingHom.IsStandardSmoothOfRelativeDimension.algebraMap_isLocalizationAway
{R : Type u}
[CommRing R]
{Rᵣ : Type u_2}
[CommRing Rᵣ]
[Algebra R Rᵣ]
(r : R)
[IsLocalization.Away r Rᵣ]
:
theorem
RingHom.isStandardSmooth_localizationPreserves :
RingHom.LocalizationPreserves fun {R S : Type u_2} [CommRing R] [CommRing S] => RingHom.IsStandardSmooth
theorem
RingHom.isStandardSmoothOfRelativeDimension_localizationPreserves
(n : ℕ)
:
RingHom.LocalizationPreserves fun {R S : Type u_2} [CommRing R] [CommRing S] =>
RingHom.IsStandardSmoothOfRelativeDimension n
theorem
RingHom.isStandardSmooth_holdsForLocalizationAway :
RingHom.HoldsForLocalizationAway fun {R S : Type u_2} [CommRing R] [CommRing S] => RingHom.IsStandardSmooth
theorem
RingHom.isStandardSmoothOfRelativeDimension_holdsForLocalizationAway :
RingHom.HoldsForLocalizationAway fun {R S : Type u_2} [CommRing R] [CommRing S] =>
RingHom.IsStandardSmoothOfRelativeDimension 0