Flat ring homomorphisms #
In this file we define flat ring homomorphisms and show their meta properties.
A ring homomorphism f : R →+* S
is flat if S
is flat as an R
module.
Equations
- f.Flat = Module.Flat R S
Instances For
The identity of a ring is flat.
theorem
RingHom.Flat.of_bijective
{R : Type u_1}
{S : Type u_2}
[CommRing R]
[CommRing S]
{f : R →+* S}
(hf : Function.Bijective ⇑f)
:
f.Flat
Bijective ring maps are flat.
theorem
RingHom.Flat.containsIdentities :
RingHom.ContainsIdentities fun {R S : Type u_4} [CommRing R] [CommRing S] => RingHom.Flat
theorem
RingHom.Flat.stableUnderComposition :
RingHom.StableUnderComposition fun {R S : Type u_4} [CommRing R] [CommRing S] => RingHom.Flat
theorem
RingHom.Flat.respectsIso :
RingHom.RespectsIso fun {R S : Type u_4} [CommRing R] [CommRing S] => RingHom.Flat
theorem
RingHom.Flat.isStableUnderBaseChange :
RingHom.IsStableUnderBaseChange fun {R S : Type u_4} [CommRing R] [CommRing S] => RingHom.Flat
theorem
RingHom.Flat.holdsForLocalizationAway :
RingHom.HoldsForLocalizationAway fun {R S : Type u_4} [CommRing R] [CommRing S] => RingHom.Flat
theorem
RingHom.Flat.ofLocalizationSpanTarget :
RingHom.OfLocalizationSpanTarget fun {R S : Type u_4} [CommRing R] [CommRing S] => RingHom.Flat
theorem
RingHom.Flat.propertyIsLocal :
RingHom.PropertyIsLocal fun {R S : Type u_4} [CommRing R] [CommRing S] => RingHom.Flat
Flat is a local property of ring homomorphisms.